OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10314–10323

Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes

Maria R. Fernández-Ruiz, Ming Li, and José Azaña  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10314-10323 (2013)
http://dx.doi.org/10.1364/OE.21.010314


View Full Text Article

Enhanced HTML    Acrobat PDF (2032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The time-domain counterpart of traditional spatial holography is formalized and experimentally demonstrated. This concept involves the recording, generation and/or processing of complex (amplitude and phase) optical time-domain signals using intensity-only temporal detection and/or modulation optical devices. The resulting procedures greatly simplify present approaches aimed to similar generation and processing tasks. As a proof-of-concept, we successfully demonstrate a time-domain computer holography scheme. This scheme is used for experimental generation of user-defined complex optical temporal signals, in particular, a sequence of arbitrarily chirped Gaussian-like optical pulses and complex-modulation (16-QAM) optical telecommunication data streams, by CW-light intensity-only modulation.

© 2013 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(250.4110) Optoelectronics : Modulators

ToC Category:
Holography

History
Original Manuscript: February 11, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 14, 2013
Published: April 19, 2013

Citation
Maria R. Fernández-Ruiz, Ming Li, and José Azaña, "Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes," Opt. Express 21, 10314-10323 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948). [CrossRef] [PubMed]
  2. D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature208(5016), 1159–1162 (1965). [CrossRef]
  3. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am.52(10), 1123–1128 (1962). [CrossRef]
  4. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt.5(6), 967–969 (1966). [CrossRef] [PubMed]
  5. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett.9(11), 405–407 (1966). [CrossRef]
  6. M. Kato and T. Suzuki, “Fourier-transform holograms by Fresnel zone-plate achromatic-fringe interferometer,” J. Opt. Soc. Am.59(3), 303–306 (1969). [CrossRef]
  7. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science265(5173), 749–752 (1994). [CrossRef] [PubMed]
  8. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett.23(15), 1221–1223 (1998). [CrossRef] [PubMed]
  9. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt.41(22), 4489–4496 (2002). [CrossRef] [PubMed]
  10. M. L. Huebschman, B. Munjuluri, and H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express11(5), 437–445 (2003). [CrossRef] [PubMed]
  11. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt.45(5), 960–967 (2006). [CrossRef] [PubMed]
  12. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010). [CrossRef] [PubMed]
  13. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron.4(2), 332–341 (1998).
  14. X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science278(5335), 96–100 (1997). [CrossRef]
  15. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994). [CrossRef]
  16. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am.71, 1373–1376 (1981).
  17. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999). [CrossRef]
  18. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol.24(7), 2649–2662 (2006). [CrossRef]
  19. B. Jalali, D. R. Solli, and S. Gupta, “Silicon photonics: Silicon’s time lens,” Nat. Photonics3(1), 8–10 (2009). [CrossRef]
  20. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature481(7379), 62–65 (2012). [CrossRef] [PubMed]
  21. D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, O. Gerstel, J. P. Heritage, and S. J. B. Yoo, “Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation,” Opt. Express19(9), 8242–8253 (2011). [CrossRef] [PubMed]
  22. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett.22(1), 36–38 (2010). [CrossRef]
  23. A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett.23(14), 977–979 (2011). [CrossRef]
  24. S. Yan, X. Weng, Y. Gao, C. Lu, A. P. T. Lau, Y. Ji, L. Liu, and X. Xu, “Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals,” Opt. Express20(27), 29023–29034 (2012). [CrossRef] [PubMed]
  25. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008). [CrossRef] [PubMed]
  26. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon.1(2), 308–437 (2009). [CrossRef]
  27. S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol.14(3), 243–248 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited