OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10324–10334

Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities

Laurent-Daniel Haret, Xavier Checoury, Fabien Bayle, Nicolas Cazier, Philippe Boucaud, Sylvain Combrié, and Alfredo de Rossi  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10324-10334 (2013)
http://dx.doi.org/10.1364/OE.21.010324


View Full Text Article

Enhanced HTML    Acrobat PDF (2647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Collection of free carriers is a key issue in silicon photonics devices. We show that a lateral metal-semiconductor-metal Schottky junction is an efficient and simple way of dealing with that issue in a photonic crystal microcavity. Using a simple electrode design, and taking into account the optical mode profile, the resulting carrier distribution in the structure is calculated. We show that the corresponding effective free carrier lifetime can be reduced by 50 times when the bias is tuned. This allows one to maintain a high cavity quality factor under strong optical injection. In the fabricated structures, carrier depletion is correlated with transmission spectra and directly visualized by Electron Beam Induced Current pictures. These measurements demonstrate the validity of this carrier extraction principle. The design can still be optimized in order to obtain full carrier depletion at a smaller energy cost.

© 2013 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(140.3948) Lasers and laser optics : Microcavity devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: February 11, 2013
Revised Manuscript: March 22, 2013
Manuscript Accepted: March 25, 2013
Published: April 19, 2013

Citation
Laurent-Daniel Haret, Xavier Checoury, Fabien Bayle, Nicolas Cazier, Philippe Boucaud, Sylvain Combrié, and Alfredo de Rossi, "Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities," Opt. Express 21, 10324-10334 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol.24, 4600–4615 (2006). [CrossRef]
  2. M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002). [CrossRef]
  3. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18, 14671–14678 (2010). [CrossRef] [PubMed]
  4. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012). [CrossRef]
  5. G. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4, 518–526 (2010). [CrossRef]
  6. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010). [CrossRef]
  7. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30, 2575–2577 (2005). [CrossRef] [PubMed]
  8. M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004). [CrossRef] [PubMed]
  9. Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010). [CrossRef]
  10. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007). [CrossRef]
  11. X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308 (2010). [CrossRef]
  12. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. OFaolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18, 22915–22927 (2010). [CrossRef] [PubMed]
  13. T. J. Johnson and O. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” 2009 Conf. On Lasers and Electro-optics and Quantum Electronics and Laser Science Conf. (cleo/qels 2009), Vols 1–5 pp. 72–73 (2009).
  14. A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007). [CrossRef]
  15. P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011). [CrossRef]
  16. B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010). [CrossRef]
  17. J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012). [CrossRef]
  18. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17, 22505–22513 (2009). [CrossRef]
  19. L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express18, 23965–23972 (2010). [CrossRef] [PubMed]
  20. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010). [CrossRef]
  21. R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett.102, 031114 (2013). [CrossRef]
  22. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23, 123–129 (1987). [CrossRef]
  23. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15, 16604–16644 (2007). [CrossRef] [PubMed]
  24. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006). [CrossRef]
  25. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984). [CrossRef]
  26. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975). [CrossRef]
  27. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Blackwell, 2006 (3rd edition)). [CrossRef]
  28. S. Sze, D. C., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14, 1209 – 1218 (1971). [CrossRef]
  29. T. E. Everhart, O. C. Welles, and C. W. Oatley, “Factors affecting contrast and resolution in the scanning electron microscope,” J. Electron. Control7, 97–111 (1959). [CrossRef]
  30. T. E. Everhart, O. C. Wells, and R. K. Matta, “A novel method of semiconductor device measurements,” Proc. IEEE52, 1642–1647 (1964). [CrossRef]
  31. K. O. Leedy, “A bibliography on electron beam induced current analysis of semiconductor devices,” Solid-State Tech.20, 45–48 (1977).
  32. W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996). [CrossRef]
  33. C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photon. Technol. Lett.15, 1585–1587 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited