OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10351–10357

A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal

Alexander Klenner, Matthias Golling, and Ursula Keller  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 10351-10357 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1816 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-power gigahertz SESAM modelocked Yb:KGW laser is pumped with a commercial multimode diode laser and enables a strong frequency comb offset beat signal without additional amplification or pulse compression. The ultrafast Yb:KGW solid-state laser oscillator generates 125-fs pulses at an average power of 3.4 W and a repetition rate of 1.06 GHz with a record-high peak power of 22.7 kW. An octave-spanning frequency comb was generated with a 1-m long highly nonlinear photonic crystal fiber (PCF) launching only 900 mW of the total average power with a PCF coupling efficiency of 70%. The frequency comb offset was successfully detected with a carrier-envelope offset (CEO) frequency beat signal of 30-dB signal-to-noise ratio for a resolution bandwidth of 100 kHz. The robust and simple pumping scheme based on a commercially available multimode diode laser makes this laser attractive for future frequency comb metrology applications.

© 2013 OSA

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(320.0320) Ultrafast optics : Ultrafast optics
(140.3615) Lasers and laser optics : Lasers, ytterbium
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 27, 2013
Revised Manuscript: April 11, 2013
Manuscript Accepted: April 11, 2013
Published: April 19, 2013

Alexander Klenner, Matthias Golling, and Ursula Keller, "A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal," Opt. Express 21, 10351-10357 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics5(6), 364–371 (2011). [CrossRef]
  2. S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express11(8), 933–938 (2003). [CrossRef] [PubMed]
  3. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B69(4), 327–332 (1999). [CrossRef]
  4. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84(22), 5102–5105 (2000). [CrossRef] [PubMed]
  5. E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-Ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photon. Technol. Lett.12(2), 149–151 (2000). [CrossRef]
  6. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett.17(7), 505–507 (1992). [CrossRef] [PubMed]
  7. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  8. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B100(1), 15–28 (2010). [CrossRef]
  9. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326(5953), 681 (2009). [CrossRef] [PubMed]
  10. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30(13), 1734–1736 (2005). [CrossRef] [PubMed]
  11. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  12. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett.16(1), 42–44 (1991). [CrossRef] [PubMed]
  13. S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. Di Domenico, S. Pekarek, A. E. H. Oehler, T. Südmeyer, U. Keller, and P. Thomann, “Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser,” Opt. Express19(24), 24171–24181 (2011). [CrossRef] [PubMed]
  14. I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, A. Ruehl, L. Dong, and M. E. Fermann, “Fully Stabilized GHz Yb-Fiber Laser Frequency Comb,” in Advanced Solid-State Photonics (Denver, Colorado, USA, 2009), p. MF9.
  15. A. Schlatter, B. Rudin, S. C. Zeller, R. Paschotta, G. J. Spühler, L. Krainer, N. Haverkamp, H. R. Telle, and U. Keller, “Nearly quantum-noise-limited timing jitter from miniature Er:Yb:glass lasers,” Opt. Lett.30(12), 1536–1538 (2005). [CrossRef] [PubMed]
  16. U. Keller, “Ultrafast solid-state lasers,” in Landolt-Börnstein. Laser Physics and Applications. Subvolume B: Laser Systems. Part I., G. Herziger, H. Weber, and R. Proprawe, eds. (Springer Verlag, Heidelberg, 2007), 33–167.
  17. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999). [CrossRef]
  18. D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett.35(9), 1446–1448 (2010). [CrossRef] [PubMed]
  19. T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser,” Opt. Lett.37(6), 1133–1135 (2012). [CrossRef] [PubMed]
  20. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express20(4), 4248–4253 (2012). [CrossRef] [PubMed]
  21. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett.35(5), 748–750 (2010). [CrossRef] [PubMed]
  22. M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express20(11), 12191–12197 (2012). [CrossRef] [PubMed]
  23. H.-W. Yang, C. Kim, S. Y. Choi, G.-H. Kim, Y. Kobayashi, F. Rotermund, and J. Kim, “1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a carbon nanotube saturable absorber mirror,” Opt. Express20(28), 29518–29523 (2012). [CrossRef] [PubMed]
  24. S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008). [CrossRef]
  25. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express19(17), 16491–16497 (2011). [CrossRef] [PubMed]
  26. C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett.44(21), 1253–1255 (2008). [CrossRef]
  27. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett.22(17), 1317–1319 (1997). [CrossRef] [PubMed]
  28. N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er,Yb doped tungstates,” Appl. Phys. B64(4), 409–413 (1997). [CrossRef]
  29. G. Paunescu, J. Hein, and R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B79(5), 555–558 (2004). [CrossRef]
  30. G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett.31(18), 2719–2721 (2006). [CrossRef] [PubMed]
  31. R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, and U. Keller, “Picosecond pulse sources with multi-GHz repetition rates and high output power,” New J. Phys.6, 174 (2004). [CrossRef]
  32. A. K. Chin and R. K. Bertaska, “Catastrophic Optical Damage in High-Power, Broad-Area Laser Diodes,” in Materials and Reliability Handbook for Semiconductor Optical and Electron Devices, O. Ueda, and S. J. Pearton, eds. (Springer, New York, 2013), 123–147.
  33. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quantum Electron.2(3), 540–556 (1996). [CrossRef]
  34. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and Operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B12(2), 311–322 (1995). [CrossRef]
  35. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81(1), 27–32 (2005). [CrossRef]
  36. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, T. Südmeyer, and U. Keller, “High Precision Optical Characterization of Semiconductor Saturable Absorber Mirrors (SESAMs),” in Conference on Lasers and Electro-Optics (CLEO)(San Jose, California, 2008), p. talk CThKK6. [CrossRef]
  37. R. Grange, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005). [CrossRef]
  38. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett.27(13), 1180–1182 (2002). [CrossRef] [PubMed]
  39. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  40. N. Bucalovic, V. Dolgovskiy, M. C. Stumpf, C. Schori, G. Di Domenico, U. Keller, S. Schilt, and T. Südmeyer, “Effect of the carrier-envelope-offset dynamics on the stabilization of a diode-pumped solid-state frequency comb,” Opt. Lett.37(21), 4428–4430 (2012). [CrossRef] [PubMed]
  41. J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett.30(11), 1345–1347 (2005). [CrossRef] [PubMed]
  42. Y. Zaouter, J. Didierjean, F. Balembois, G. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited