OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9238–9246

Widely tunable difference frequency generation source for high-precision mid-infrared spectroscopy

Chun-Chieh Liao, Yu-Hung Lien, Kuo-Yu Wu, Yan-Rung Lin, and Jow-Tsong Shy  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9238-9246 (2013)
http://dx.doi.org/10.1364/OE.21.009238


View Full Text Article

Enhanced HTML    Acrobat PDF (2177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a widely tunable mid-infrared difference frequency generation (DFG) source by mixing ∼ 1 W Ti:sapphire laser and 6 W Nd:YAG laser beams in a 50-mm MgO-doped long periodically poled lithium niobate (MgO:PPLN). The power of the DFG source is > 2 mW over the tuning range of 2.66–4.77 μm and its free-running linewidth is about 100 kHz. Combining various frequency stabilisation schemes for the Nd:YAG laser and the Ti:sapphire laser, the DFG frequency can be precisely controlled. Besides, its frequency can be determined better than 12 kHz by measuring the Ti:sapphire laser frequency using an optical frequency comb. Two high resolution spectroscopic studies on 12C16O2 molecule are demonstrated using this DFG source. The saturation spectra of R(18) and R(60) transitions of 0001 ← 0000 fundamental band at 4.2 μm and P(20) transition of [1001, 0201]I ← 0000 band at 2.7 μm have been observed and their absolute transition frequencies are measured with an accuracy better than 30 kHz.

© 2013 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:
Spectroscopy

History
Original Manuscript: February 1, 2013
Revised Manuscript: March 13, 2013
Manuscript Accepted: March 18, 2013
Published: April 8, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Chun-Chieh Liao, Yu-Hung Lien, Kuo-Yu Wu, Yan-Rung Lin, and Jow-Tsong Shy, "Widely tunable difference frequency generation source for high-precision mid-infrared spectroscopy," Opt. Express 21, 9238-9246 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9238


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. Topics in Applied Physics (Springer, 2003), vol. 89. [CrossRef]
  2. O. Svelto, S. Longhi, V. G. Della, G. Huber, S. Kück, M. Pollnau, H. Hillmer, T. Kusserow, R. Engelbrecht, F. Rohlfing, J. Kaiser, R. Malz, G. Marowsky, K. Mann, P. Simon, C. K. Rhodes, F. J. Duarte, A. Borsutzky, J. A. Lhuillier, M. W. Sigrist, H. W¨achter, E. Saldin, E. Schneidmiller, M. Yurkov, R. Sauerbrey, J. Hein, M. Gianella, J. Helmcke, K. Midorikawa, F. Riehle, S. Steinberg, and H. Brand, “Lasers and coherent light sources,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2012), pp. 641–1046. [CrossRef]
  3. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique8, 180–198 (2007). [CrossRef]
  4. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng.49, 111102 (2010). [CrossRef]
  5. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Physique8, 1100–1128 (2007). [CrossRef]
  6. D. Mazzotti, P. Cancio, G. Giusfredi, P. D. Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30, 997–999 (2005). [CrossRef] [PubMed]
  7. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A80, 032518 (2009). [CrossRef]
  8. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett.104, 110801 (2010). [CrossRef] [PubMed]
  9. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, “Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10−11,” Opt. Express19, 23878–23888 (2011). [CrossRef] [PubMed]
  10. M. W. Porambo, B. M. Siller, J. M. Pearson, and B. J. McCall, “Broadly tunable mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometer,” Opt. Lett.37, 4422–4424 (2012). [CrossRef] [PubMed]
  11. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009). [CrossRef] [PubMed]
  12. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B: Lasers Opt.75, 281–288 (2002). [CrossRef]
  13. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5μm,” Opt. Lett.35, 3616–3618 (2010). [CrossRef] [PubMed]
  14. M. F. Witinski, J. B. Paul, and J. G. Anderson, “Pump-enhanced difference-frequency generation at 3.3 μm,” Appl. Opt.48, 2600–2606 (2009). [CrossRef] [PubMed]
  15. K. P. Petrov, A. T. Ryan, T. L. Patterson, L. Huang, S. J. Field, and D. J. Bamford, “Spectroscopic detection of methane by use of guided-wave diode-pumped difference-frequency generation,” Opt. Lett.23, 1052–1054 (1998). [CrossRef]
  16. D. Richter, P. Weibring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express15, 564–571 (2007). [CrossRef] [PubMed]
  17. I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. D. Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012). [CrossRef] [PubMed]
  18. H.-C. Chen, C.-Y. Hsiao, W.-J. Ting, S.-T. Lin, and J.-T. Shy, “Saturation spectroscopy of CO2 and frequency stabilization of an optical parametric oscillator at 2.77 μm,” Opt. Lett.37, 2409–2411 (2012). [CrossRef] [PubMed]
  19. K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. I. I. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett.551, 1–6 (2012). [CrossRef]
  20. W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), vol. 1, p. 297.
  21. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum.70, 242–243 (1999). [CrossRef]
  22. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia40, 103–133 (2003). [CrossRef]
  23. A. Y. Nevsky, R. Holzwarth, J. Reichert, T. Udem, T. W. H¨ansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun.192, 263–272 (2001). [CrossRef]
  24. J. Reichert, R. Holzwarth, T. Udem, and T. W. H¨ansch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999). [CrossRef]
  25. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B: Lasers Opt.69, 327–332 (1999). [CrossRef]
  26. C.-C. Liao, K.-Y. Wu, Y.-H. Lien, H. Knöckel, H.-C. Chui, E. Tiemann, and J.-T. Shy, “Precise frequency measurements of 127I2 lines in the wavelength region 750–780 nm,” J. Opt. Soc. Am. B27, 1208–1214 (2010). [CrossRef]
  27. Y.-H. Lien, K.-J. Lo, H.-C. Chen, J.-R. Chen, J.-Y. Tian, J.-T. Shy, and Y.-W. Liu, “Absolute frequencies of the 6,7Li 2S 2S1/2 → 3S 2S1/2 transitions,” Phys. Rev. A84, 042511 (2011). [CrossRef]
  28. I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A84, 042504 (2011). [CrossRef]
  29. H.-M. Fang, S.-C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32–0 transition of molecular iodine at 532 nm,” Opt. Commun.257, 76–83 (2006). [CrossRef]
  30. A. Groh, D. Goddon, M. Schneider, W. Zimmermann, and W. Urban, “Sub-doppler heterodyne frequency measurements on the CO2 10011 − 00001 vibrational band: New reference lines near 3714 cm−1,” J. Mol. Spectrosc.146, 161–168 (1991). [CrossRef]
  31. C.-C. Chou, J.-T. Shy, and T.-C. Yen, “Saturated 4.3-μm fluorescence frequency stabilization of a sequence-band CO2 laser,” Opt. Lett.17, 967–969 (1992). [CrossRef] [PubMed]
  32. A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc.167, 211–224 (1994). [CrossRef]
  33. F. Bayer-Helms and J. Helmcke, “Modulation broadening of spectral profiles,” in PTB-Me-17, PTB-Bericht, pp. 85–109 (PTB, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited