OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9255–9266

Laser filamentation induced air-flow motion in a diffusion cloud chamber

Haiyi Sun, Jiansheng Liu, Cheng Wang, Jingjing Ju, Zhanxin Wang, Wentao Wang, Xiaochun Ge, Chuang Li, See Leang Chin, Ruxin Li, and Zhizhan Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9255-9266 (2013)
http://dx.doi.org/10.1364/OE.21.009255


View Full Text Article

Enhanced HTML    Acrobat PDF (3993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

© 2013 OSA

OCIS Codes
(000.6850) General : Thermodynamics
(010.3920) Atmospheric and oceanic optics : Meteorology
(140.3450) Lasers and laser optics : Laser-induced chemistry
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 31, 2013
Revised Manuscript: March 26, 2013
Manuscript Accepted: March 28, 2013
Published: April 8, 2013

Citation
Haiyi Sun, Jiansheng Liu, Cheng Wang, Jingjing Ju, Zhanxin Wang, Wentao Wang, Xiaochun Ge, Chuang Li, See Leang Chin, Ruxin Li, and Zhizhan Xu, "Laser filamentation induced air-flow motion in a diffusion cloud chamber," Opt. Express 21, 9255-9266 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Long plasma channels generated by femtosecond laser pulses,” Phys. Rev. E.65(1), 016406 (2002). [CrossRef] [PubMed]
  2. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett.20(1), 73–75 (1995). [CrossRef] [PubMed]
  3. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000). [CrossRef]
  4. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57(18), 2268–2271 (1986). [CrossRef] [PubMed]
  5. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010). [CrossRef] [PubMed]
  6. P. Béjot, E. Hertz, J. Kasparian, B. Lavorel, J.-P. Wolf, and O. Faucher, “Transition from plasma-driven to Kerr-driven laser filamentation,” Phys. Rev. Lett.106(24), 243902 (2011). [CrossRef] [PubMed]
  7. W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1–3), 189–197 (2002). [CrossRef]
  8. S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B95(1), 1–12 (2009). [CrossRef]
  9. Y. Petit, S. Henin, J. Kasparian, and J.-P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett.97(2), 021108 (2010). [CrossRef]
  10. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science301(5629), 61–64 (2003). [CrossRef] [PubMed]
  11. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys.83(9), 863–905 (2005). [CrossRef]
  12. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett.21(1), 62–65 (1996). [CrossRef] [PubMed]
  13. P. Arpin, T. Popmintchev, N. L. Wagner, A. L. Lytle, O. Cohen, H. C. Kapteyn, and M. M. Murnane, “Enhanced high harmonic generation from multiply ionized argon above 500 eV through laser pulse self-compression,” Phys. Rev. Lett.103(14), 143901 (2009). [CrossRef] [PubMed]
  14. A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett.27(5), 306–308 (2002). [CrossRef] [PubMed]
  15. H.-L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel)11(1), 32–53 (2011). [CrossRef] [PubMed]
  16. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B71(4), 573–580 (2000). [CrossRef]
  17. X. M. Zhao, J.-C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lightning discharges in gases,” IEEE J. Quantum Electron.31(3), 599–612 (1995). [CrossRef]
  18. J. Kasparian, L. Wöste, and J.-P. Wolf, “Laser-based weather control,” Opt. Photon. News21(7), 22–27 (2010). [CrossRef]
  19. P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics4(7), 451–456 (2010). [CrossRef]
  20. S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun.2, 456 (2011). [CrossRef] [PubMed]
  21. Y. Petit, S. Henin, J. Kasparian, J.-P. Wolf, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, L. Wöste, A. Vogel, T. Pohl, and K. Weber, “Influence of pulse duration, energy, and focusing on laser-assisted water condensation,” Appl. Phys. Lett.98(4), 041105 (2011). [CrossRef]
  22. J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett.37(7), 1214–1216 (2012). [CrossRef] [PubMed]
  23. B. J. Mason, Clouds, Rains & Rainmaking, 2th ed. (Cambridge University, 1975), Chap. 1.
  24. T. Taha and Z. F. Cui, “CFD modelling of gas-sparged ultrafiltration in tubular membranes,” J. Membr. Sci.210(1), 13–27 (2002). [CrossRef]
  25. F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, and S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Ocean. Technol.21(6), 876–887 (2004). [CrossRef]
  26. F. Stratmann, M. Wilck, V. Ždímal, and J. Smolík, “2-D model for the description of thermal diffusion cloud chambers: description and first results,” J. Phys. Chem. B105(47), 11641–11648 (2001). [CrossRef]
  27. W. Tao, Numerical Heat Transfer, 2th ed. (Xi'an Jiaotong University, 2001), Chap. 1.
  28. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of powerful ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997). [CrossRef] [PubMed]
  29. J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation,” Appl. Phys. B110(3), 375–380 (2013). [CrossRef]
  30. Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(5), 056403 (2003). [CrossRef] [PubMed]
  31. S.-B. Wen, X. Mao, C. Liu, R. Greif, and R. Russo, “Expansion and radiative cooling of the laser induced plasma,” J. Phys. Conf. Ser.59(1), 343–347 (2007). [CrossRef]
  32. J. Yu, Q. Ma, V. Motto-Ros, W. Lei, X. Wang, and X. Bai, “Generation and expansion of laser-induced plasma as a spectroscopic emission source,” Front. Phys.7(6), 649–669 (2012). [CrossRef]
  33. S. I. Yun, K.-D. Oh, K.-S. Ryu, C.-G. Kim, H. L. Park, H. J. Seo, and C. Kum, “Photothermal probe beam deflection measurement of thermal diffusivity of atmospheric air,” Appl. Phys. B40(2), 95–98 (1986). [CrossRef]
  34. D. W. James, “The thermal diffusivity of ice and water between −40 and +60°C,” J. Mater. Sci.3(5), 540–543 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited