OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9308–9314

X-ray phase imaging with a laboratory source using selective reflection from a mirror

Daniele Pelliccia and David M. Paganin  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9308-9314 (2013)
http://dx.doi.org/10.1364/OE.21.009308


View Full Text Article

Enhanced HTML    Acrobat PDF (2286 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel approach for hard x-ray phase contrast imaging with a laboratory source is reported. The technique is based on total external reflection from the edge of a mirror, aligned to intercept only half of the incident beam. The mirror edge thus produces two beams. The refraction x-rays undergo when interacting with a sample placed before the mirror, causes relative intensity variations between direct and reflected beams. Quantitative phase contrast and pure absorption imaging are demonstrated using this method.

© 2013 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(340.7440) X-ray optics : X-ray imaging
(340.7470) X-ray optics : X-ray mirrors

ToC Category:
X-ray Optics

History
Original Manuscript: February 13, 2013
Revised Manuscript: March 26, 2013
Manuscript Accepted: March 30, 2013
Published: April 8, 2013

Virtual Issues
April 30, 2013 Spotlight on Optics

Citation
Daniele Pelliccia and David M. Paganin, "X-ray phase imaging with a laboratory source using selective reflection from a mirror," Opt. Express 21, 9308-9314 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Paganin, Coherent X-Ray Optics (Oxford University, New York, 2006).
  2. K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996). [CrossRef] [PubMed]
  3. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998). [CrossRef]
  4. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002). [CrossRef] [PubMed]
  5. V. A. Somenkov, A. K. Tkalich, and S. Shil’stein, “Refraction contrast in X-ray microscopy,” Sov. Phys. Tech. Phys.3, 1309–1311 (1991).
  6. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995). [CrossRef]
  7. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997). [CrossRef] [PubMed]
  8. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003). [CrossRef]
  9. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  10. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001). [CrossRef] [PubMed]
  11. A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” Appl. Opt.50(12), 1765–1769 (2011). [CrossRef] [PubMed]
  12. A. Olivo, P. C. Diemoz, and A. Bravin, “Amplification of the phase contrast signal at very high x-ray energies,” Opt. Lett.37(5), 915–917 (2012). [CrossRef] [PubMed]
  13. P. R. T. Munro, L. Rigon, K. Ignatyev, F. C. M. Lopez, D. Dreossi, R. D. Speller, and A. Olivo, “A quantitative, non-interferometric X-ray phase contrast imaging technique,” Opt. Express21(1), 647–661 (2013). [CrossRef] [PubMed]
  14. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, Boston, 2000).
  15. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004). [CrossRef]
  16. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005). [CrossRef]
  17. P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited