OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9343–9352

Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs)

Basudev Lahiri, Scott G. McMeekin, Richard M. De La Rue, and Nigel P. Johnson  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9343-9352 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Depositing very thin organic films on the surface of arrays of asymmetric split-ring resonators (A-SRRs) produces a shift in their resonance spectra that can be utilized for sensitive analyte detection. Here we show that when poly-methyl-methacrylate (PMMA) is used as an organic probe (analyte) on top of the A-SRR array, the phase and amplitude of a characteristic molecular Fano resonance associated with a carbonyl bond changes according to the spectral positions of the trapped mode resonance of the A-SRRs and their plasmonic reflection peaks. Furthermore, we localize blocks of PMMA at different locations on the A-SRR array to determine the effectiveness of detection of very small amounts of non-uniformly distributed analyte.

© 2013 OSA

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(250.0250) Optoelectronics : Optoelectronics
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 7, 2013
Revised Manuscript: March 22, 2013
Manuscript Accepted: March 26, 2013
Published: April 9, 2013

Basudev Lahiri, Scott G. McMeekin, Richard M. De La Rue, and Nigel P. Johnson, "Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs)," Opt. Express 21, 9343-9352 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007). [CrossRef]
  2. P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004). [CrossRef]
  3. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008). [CrossRef] [PubMed]
  5. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000). [CrossRef]
  6. J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express16(3), 1529–1545 (2008). [CrossRef] [PubMed]
  7. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005). [CrossRef]
  8. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009). [CrossRef] [PubMed]
  9. P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011). [CrossRef]
  10. E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).
  11. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011). [CrossRef] [PubMed]
  12. I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011). [CrossRef] [PubMed]
  13. B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett.98(153116), 1–3 (2011).
  14. D. H. Williams and I. Fleming, “Spectroscopic methods in organic chemistry,” (McGraw Hill Publication, 1973) 2nd Edition. Chapter 2.
  15. A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and spectral characterization of Poly(Methyl Methacrylate) /Hydroxyapatite composite for biomedical applications,” Trends Biomaterials Artif Organs.18, 41–45 (2004).
  16. L. H. Lee and W. C. Chen, “High refractive index thin films prepared from Trialkoxysilane-capped Poly(methyl methacrylate)-Titania hybrid materials,” Chem. Mater.13(3), 1137–1142 (2001). [CrossRef]
  17. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33, 1623–1625 (2008).
  18. A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer (Guildf.)43(22), 6027–6035 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited