OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9377–9389

Measuring three-dimensional interaction potentials using optical interference

Nassir Mojarad, Vahid Sandoghdar, and Madhavi Krishnan  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9377-9389 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.1650) Imaging systems : Coherence imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:
Imaging Systems

Original Manuscript: February 20, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: March 31, 2013
Published: April 9, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Nassir Mojarad, Vahid Sandoghdar, and Madhavi Krishnan, "Measuring three-dimensional interaction potentials using optical interference," Opt. Express 21, 9377-9389 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Israelachvili and G. E. Adams, “Measurement of forces between 2 mica surfaces in aqueous electrolyte solutions in range 0-100 nm,” J. Chem. Soc, Faraday Trans. 1 F74, 975–1001 (1978). [CrossRef]
  2. W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature353(6341), 239–241 (1991). [CrossRef]
  3. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5(6), 491–505 (2008). [CrossRef] [PubMed]
  4. M. A. Bevan and S. L. Eichmann, “Optical microscopy measurements of kT-scale colloidal interactions,” Curr. Opin. Colloid Interface Sci.16(2), 149–157 (2011). [CrossRef]
  5. M. B. Hochrein, J. A. Leierseder, L. Golubović, and J. O. Rädler, “DNA localization and stretching on periodically microstructured lipid membranes,” Phys. Rev. Lett.96(3), 038103 (2006). [CrossRef] [PubMed]
  6. M. Krishnan, I. Mönch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett.7(5), 1270–1275 (2007). [CrossRef] [PubMed]
  7. M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(4), 041406 (2007). [CrossRef] [PubMed]
  8. M. A. Bevan and D. C. Prieve, “Direct measurement of retarded van der Waals attraction,” Langmuir15(23), 7925–7936 (1999). [CrossRef]
  9. P. Bahukudumbi and M. A. Bevan, “Imaging energy landscapes with concentrated diffusing colloidal probes,” J. Chem. Phys.126(24), 244702 (2007). [CrossRef] [PubMed]
  10. A. D. Dinsmore, D. T. Wong, P. Nelson, and A. G. Yodh, “Hard spheres in vesicles: curvature-induced forces and particle-induced curvature,” Phys. Rev. Lett.80(2), 409–412 (1998). [CrossRef]
  11. F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008). [CrossRef] [PubMed]
  12. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  13. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005). [CrossRef] [PubMed]
  14. V. Heinrich, W. P. Wong, K. Halvorsen, and E. Evans, “Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles,” Langmuir24(4), 1194–1203 (2008). [CrossRef] [PubMed]
  15. S. L. Eichmann, S. G. Anekal, and M. A. Bevan, “Electrostatically confined nanoparticle interactions and dynamics,” Langmuir24(3), 714–721 (2008). [CrossRef] [PubMed]
  16. S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express15(4), 1505–1512 (2007). [CrossRef] [PubMed]
  17. A. Sato, Q. D. Pham, S. Hasegawa, and Y. Hayasaki, “Three-dimensional subpixel estimation in holographic position measurement of an optically trapped nanoparticle,” Appl. Opt.52(1), A216–A222 (2013). [CrossRef] [PubMed]
  18. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett.95(2), 021103 (2009). [CrossRef]
  19. M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010). [CrossRef] [PubMed]
  20. M. Speidel, A. Jonás, and E. L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett.28(2), 69–71 (2003). [CrossRef] [PubMed]
  21. Z. P. Zhang and C. H. Menq, “Three-dimensional particle tracking with subnanometer resolution using off-focus images,” Appl. Opt.47(13), 2361–2370 (2008). [CrossRef] [PubMed]
  22. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett.32(7), 811–813 (2007). [CrossRef] [PubMed]
  23. S. Jin, P. M. Haggie, and A. S. Verkman, “Single-particle tracking of membrane protein diffusion in a potential: Simulation, detection, and application to confined diffusion of CFTR Cl- channels,” Biophys. J.93(3), 1079–1088 (2007). [CrossRef] [PubMed]
  24. W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express14(25), 12517–12531 (2006). [CrossRef] [PubMed]
  25. V. Jacobsen, E. Klotzsch, and V. Sandoghdar, “Interferometric detection and tracking of nanoparticles,” in Nano Biophotonics: Science and Technology, H. Masuhara, S. Kawata, and F. Tokunaga, eds. (Elsevier, 2007).
  26. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett.93(3), 037401 (2004). [CrossRef] [PubMed]
  27. J. Ortega-Arroyo and P. Kukura, “Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy,” Phys. Chem. Chem. Phys.14(45), 15625–15636 (2012). [CrossRef] [PubMed]
  28. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2011).
  29. M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, “Geometry-induced electrostatic trapping of nanometric objects in a fluid,” Nature467(7316), 692–695 (2010). [CrossRef] [PubMed]
  30. N. Mojarad and M. Krishnan, “Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap,” Nat. Nanotechnol.7(7), 448–452 (2012). [CrossRef] [PubMed]
  31. P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009). [CrossRef] [PubMed]
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007).
  33. M. Meier and A. Wokaun, “Enhanced fields on large metal particles - dynamic depolarization,” Opt. Lett.8(11), 581–583 (1983). [CrossRef] [PubMed]
  34. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lon. Ser-A 253, 358–379 (1959).
  35. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  36. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002). [CrossRef] [PubMed]
  37. J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009). [CrossRef] [PubMed]
  38. G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010). [CrossRef] [PubMed]
  39. N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Eur. Opt. Soc.- Rapid Publ.4, 09014 (2009). [CrossRef]
  40. T. Savin and P. S. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 041106 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited