OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9422–9427

Design of invisibility anti-cloak for two-dimensional arbitrary geometries

Long Li, Feifei Huo, Yuanming Zhang, Yang Chen, and Changhong Liang  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9422-9427 (2013)
http://dx.doi.org/10.1364/OE.21.009422


View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we derive the material parameter formulae for designing an electromagnetic invisibility anti-cloak of two-dimensional arbitrary geometry, which is conformal with the cloaked object. Different shapes of electromagnetic invisibility anti-cloaks are proposed to verify the correctness and effectiveness of the proposed formulae. The simulation results show that the invisibility anti-cloak can break cloak shielding and make the external electromagnetic waves into the cloak. This is not only to realize the transfer of information, but will not affect the role of cloak of stealth.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.0230) Optical devices : Optical devices
(160.3918) Materials : Metamaterials
(260.2710) Physical optics : Inhomogeneous optical media
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Physical Optics

History
Original Manuscript: February 1, 2013
Revised Manuscript: March 20, 2013
Manuscript Accepted: April 2, 2013
Published: April 9, 2013

Citation
Long Li, Feifei Huo, Yuanming Zhang, Yang Chen, and Changhong Liang, "Design of invisibility anti-cloak for two-dimensional arbitrary geometries," Opt. Express 21, 9422-9427 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9422


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  3. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247 (2006). [CrossRef]
  4. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  5. G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys.8(10), 248 (2006). [CrossRef]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007). [CrossRef]
  8. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007). [CrossRef]
  9. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Desigh of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations,” Photon. Nanostruct.: Fundam. Appl.6(1), 87–95 (2008). [CrossRef]
  10. T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express16(22), 18545–18550 (2008). [CrossRef] [PubMed]
  11. J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett.34(5), 644–646 (2009). [CrossRef] [PubMed]
  12. D. H. Kwon and D. H. Werner, “Transformation electromagnetics: an overview of the theory and applications,” IEEE Trans. Antennas Propag. 52(1), 24–46 (2010). [CrossRef]
  13. X. Chen, Y. Fu, and N. Yuan, “Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz’s equation,” Opt. Express17(5), 3581–3586 (2009). [CrossRef] [PubMed]
  14. H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express16(19), 14603–14608 (2008). [CrossRef] [PubMed]
  15. G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Cloak/anti-cloak interactions,” Opt. Express17(5), 3101–3114 (2009). [CrossRef] [PubMed]
  16. G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Analytical study of spherical cloak/anti-cloak interactions,” Wave Motion48(6), 455–467 (2011). [CrossRef]
  17. I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81(12), 125124 (2010). [CrossRef]
  18. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking a sensor via transformation optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(1), 016603 (2011). [CrossRef] [PubMed]
  19. C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express16(17), 13414–13420 (2008). [CrossRef] [PubMed]
  20. Comsol Multiphysics” (Comsol AB), < http://www.comsol.com >.
  21. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036621 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited