OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9428–9436

Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications

Yi-Hsin Lin and Hung-Shan Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9428-9436 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An electrically tunable-focusing and polarizer-free liquid crystal (LC) lens for ophthalmic applications is demonstrated. The optical mechanism of a LC lens used in human eye system is introduced. The polarizer-free LC lens for myopia-presbyopia based on artificial accommodation is demonstrated. The continuously tunable-focusing properties of the LC lenses are more practical in applications for different visional conditions of people. The concept we proposed can also be applied to another types of lenses as long as the focusing properties are tunable. The concept in this paper can also be extensively applied to imaging systems, and projection systems, such as cameras in cell phones, pico projectors, and endoscopes.

© 2013 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: February 1, 2013
Revised Manuscript: March 6, 2013
Manuscript Accepted: April 2, 2013
Published: April 9, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Yi-Hsin Lin and Hung-Shan Chen, "Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications," Opt. Express 21, 9428-9436 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Werner, F. Trindade, F. Pereira, and L. Werner, “Physiology of accommodation and presbyopia,” Arq. Bras. Oftalmol.63, 503–509 (2000).
  2. E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis.7(10), 16, 1–10 (2007). [PubMed]
  3. G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A19(2), 266–275 (2002). [PubMed]
  4. M. Jalie, Opthalmic lenses & Dispensing, 3rd. ed. (Elsevier/Butterworth Heinemann, 2008).
  5. D. A. Atchison and G. Smith, Optics of The Human Eyes (Elsevier Science Limited, 2002).
  6. H. Ren and S. T. Wu, Introduction to adaptive lenses (John Wiley & Sons, 2012).
  7. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express14(20), 8900–8917 (2006). [PubMed]
  8. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).
  9. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett.97(6), 063505 (2010).
  10. H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys.49(10), 102502 (2010).
  11. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
  12. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
  13. H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater.12(6), 234–240 (2011).
  14. M. Ye and S. Sato, “Liquid Crystal Lens with Insulator Layers for Focusing Light Waves of Arbitrary Polarizations,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6439–6440 (2003).
  15. M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett.3, 505–507 (2006).
  16. G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006). [PubMed]
  17. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express13(22), 8746–8752 (2005). [PubMed]
  18. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
  19. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010). [PubMed]
  20. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012). [PubMed]
  21. A. F. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express4(9), 344–352 (1999). [PubMed]
  22. A. N. Simonov, G. Vdovin, and M. C. Rombach, “Cubic optical elements for an accommodative intraocular lens,” Opt. Express14(17), 7757–7775 (2006). [PubMed]
  23. A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-crystal intraocular adaptive lens with wireless control,” Opt. Express15(12), 7468–7478 (2007). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited