OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9437–9446

Mode converter in metal-insulator-metal plasmonic waveguide designed by transformation optics

Xiang-Tian Kong, Zu-Bin Li, and Jian-Guo Tian  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9437-9446 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A metal-insulator-metal (MIM) waveguide can support two plasmonic modes. Efficient conversion between the two modes can be achieved by reshaping of both phase and power density distributions of the guided mode. The converters are designed with the assistance of transformation optics. We propose two practical configurations for mode conversion, which only consist of homogeneous materials yielded from linear coordinate transformations. The functionalities of the converters are demonstrated by full wave simulations. Without consideration of transmission loss, conversion efficiency of as high as 95% can be realized.

© 2013 OSA

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optical Devices

Original Manuscript: February 4, 2013
Revised Manuscript: April 2, 2013
Manuscript Accepted: April 5, 2013
Published: April 9, 2013

Xiang-Tian Kong, Zu-Bin Li, and Jian-Guo Tian, "Mode converter in metal-insulator-metal plasmonic waveguide designed by transformation optics," Opt. Express 21, 9437-9446 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  4. J.-C. Weeber, M. U. Gonzalez, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett.87(22), 221101 (2005). [CrossRef]
  5. A. V. Krasavin and A. V. Zayats, “Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides,” Opt. Lett.36(16), 3127–3129 (2011). [CrossRef] [PubMed]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  7. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010). [CrossRef] [PubMed]
  8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005). [CrossRef]
  9. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006). [CrossRef] [PubMed]
  10. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991). [CrossRef] [PubMed]
  11. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett.8(7), 386–388 (1983). [CrossRef] [PubMed]
  12. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett.95(1), 013504 (2009). [CrossRef]
  13. H.-R. Park, J.-M. Park, M. S. Kim, and M.-H. Lee, “A waveguide-typed plasmonic mode converter,” Opt. Express20(17), 18636–18645 (2012). [CrossRef] [PubMed]
  14. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Linear transformation optics for plasmonics,” J. Opt. Soc. Am. B29(10), 2659–2664 (2012). [CrossRef]
  15. H. Xu, B. Zhang, T. Yu, G. Barbastathis, and H. Sun, “Dielectric waveguide bending adapter with ideal transmission: practical design strategy of area-preserving affine transformation optics,” J. Opt. Soc. Am. B29(6), 1287–1290 (2012). [CrossRef]
  16. T. Han, C.-W. Qiu, J.-W. Dong, X. Tang, and S. Zouhdi, “Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions,” Opt. Express19(14), 13020–13030 (2011). [CrossRef] [PubMed]
  17. U. Leonhardt and T. G. Philbin, Transformation Optics and the Geometry of Light (Elsevier Science Bv, Amsterdam, 2009), vol. 53, pp. 69–152.
  18. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett.10(6), 1991–1997 (2010). [CrossRef] [PubMed]
  19. E. D. Palik, Handbook of optical constants of solids (Academic Press, London, 1985).
  20. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011). [CrossRef] [PubMed]
  21. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express19(9), 8625–8631 (2011). [CrossRef] [PubMed]
  22. X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett.95(18), 184102 (2009). [CrossRef]
  23. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett.31(14), 2133–2135 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited