OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9447–9456

CMOS-compatible temperature-independent tunable silicon optical lattice filters

Liangjun Lu, Linjie Zhou, Xiaomeng Sun, Jingya Xie, Zhi Zou, Haike Zhu, Xinwan Li, and Jianping Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9447-9456 (2013)
http://dx.doi.org/10.1364/OE.21.009447


View Full Text Article

Enhanced HTML    Acrobat PDF (1588 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a CMOS-compatible athermal tunable silicon optical lattice filter composed of 10 cascaded 2 × 2 asymmetric Mach-Zehnder interferometers. Active tuning experiments show that the filter central wavelength can be red-/blue-shifted by 13.1/21.3 nm with power consumption of 77/96 mW on top/bottom arms. Temperature shift measurements show that the thermal-sensitivity of the filter central wavelength before active tuning is as low as −1.465 pm/°C. The thermal-sensitivity is varied within 26.5 pm/°C to −27.1 pm/°C when the filter central wavelength is tuned in the wavelength range of 1534 nm to 1551 nm. We use the transfer matrix method to theoretically model the lattice filter and its thermal-sensitivity before and after tuning is analyzed and discussed.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: January 22, 2013
Revised Manuscript: March 14, 2013
Manuscript Accepted: March 26, 2013
Published: April 9, 2013

Citation
Liangjun Lu, Linjie Zhou, Xiaomeng Sun, Jingya Xie, Zhi Zou, Haike Zhu, Xinwan Li, and Jianping Chen, "CMOS-compatible temperature-independent tunable silicon optical lattice filters," Opt. Express 21, 9447-9456 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004). [CrossRef] [PubMed]
  2. S. Fathpour, Silicon Photonics for Telecommunications and Biomedicine (CRC Press, 2011).
  3. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  4. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9(3), 561–601 (1980). [CrossRef]
  5. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE6273, 62732J, 62732J-10 (2006). [CrossRef]
  6. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18(4), 3487–3493 (2010). [CrossRef] [PubMed]
  7. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett.34(5), 599–601 (2009). [CrossRef] [PubMed]
  8. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with firectly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
  9. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express19(6), 5143–5148 (2011). [CrossRef] [PubMed]
  10. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012). [CrossRef] [PubMed]
  11. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  12. P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett.35(20), 3462–3464 (2010). [CrossRef] [PubMed]
  13. L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, G. Morthier, J. Teng, X. Han, X. Jian, M. Zhao, and R. Baets, “Athermal AWGs in SOI by overlaying a polymer cladding on narrowed arrayed waveguides,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThV6.
  14. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009). [CrossRef]
  15. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express18(3), 1879–1887 (2010). [CrossRef] [PubMed]
  16. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37(12), 2253–2255 (2012). [CrossRef] [PubMed]
  17. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett.28(18), 1663–1664 (2003). [CrossRef] [PubMed]
  18. W. Qian and H. Sailing, “Optimal design of planar wavelength circuits based on Mach-Zehnder interferometers and their cascaded forms,” J. Lightwave Technol.23(3), 1284–1290 (2005). [CrossRef]
  19. S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011). [CrossRef]
  20. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011). [CrossRef] [PubMed]
  21. C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, and G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express19(16), 15429–15437 (2011). [CrossRef] [PubMed]
  22. M. J. Strain, M. Gnan, G. Bellanca, R. M. De La Rue, and M. Sorel, “Retrieval of bragg grating transmission spectra by post-process removal of spurious Fabry-Pérot oscillations,” Opt. Express17(16), 13493–13501 (2009). [CrossRef] [PubMed]
  23. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (John Wiley & Sons, Inc., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited