OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9722–9733

Coupling modulation of microrings at rates beyond the linewidth limit

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9722-9733 (2013)
http://dx.doi.org/10.1364/OE.21.009722


View Full Text Article

Acrobat PDF (2616 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate optical modulation rates exceeding the conventional cavity linewidth limit using a silicon coupling modulated microring. Small-signal measurements show coupling modulation was free of the parasitic cavity linewidth limitations at rates at least 6× the cavity linewidth. Eye diagram measurements show coupling modulation achieved data rates > 2× the rate attainable by conventional intracavity phase modulation. We propose to use DC-balanced encoding to mitigate the inter-symbol interference in coupling modulation. Analysis shows that coupling modulation can be more efficient than intracavity modulation for large output swings and high-Q resonators. Coupling modulation enables very high-Q resonant modulators to be simultaneously low-power and high-speed, features which are mutually incompatible in typical resonant modulators studied to date.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: February 5, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 5, 2013
Published: April 12, 2013

Citation
W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, "Coupling modulation of microrings at rates beyond the linewidth limit," Opt. Express 21, 9722-9733 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9722


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005). [CrossRef]
  2. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express19, 26017–26026 (2011). [CrossRef]
  3. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17, 22484–22490 (2009). [CrossRef]
  4. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25 Gb/s 1 V-driving cmos ring modulator with integrated thermal tuning,” Opt. Express19, 20435–20443 (2011). [CrossRef] [PubMed]
  5. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012). [CrossRef]
  6. W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012). [CrossRef]
  7. J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012). [CrossRef] [PubMed]
  8. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol.20, 1968–1975 (2002). [CrossRef]
  9. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express16, 15741–15753 (2008). [CrossRef] [PubMed]
  10. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol.27, 3800–3811 (2009). [CrossRef]
  11. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14, 483–485 (2002). [CrossRef]
  12. W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express13, 1651–1659 (2005). [CrossRef] [PubMed]
  13. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express15, 9194–9204 (2007). [CrossRef] [PubMed]
  14. D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010). [CrossRef]
  15. P. Dong, L. Chen, Q. F. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Opt. Lett.34, 2315–2317 (2009). [CrossRef] [PubMed]
  16. D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009). [CrossRef]
  17. W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.
  18. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Elect.23, 123–129 (1987). [CrossRef]
  19. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett.36, 3338–3340 (2011). [CrossRef] [PubMed]
  20. S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.
  21. S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.
  22. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15, 430–436 (2007). [CrossRef] [PubMed]
  23. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15, 17106–17113 (2007). [CrossRef] [PubMed]
  24. S. Manipatruni, Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), 537 –538.
  25. M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in “Integrated Photonics Research, Silicon and Nanophotonics,” (2010), IMC2.
  26. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012). [CrossRef]
  27. W. D. Sacher and J. K. S. Poon, “Microring quadrature modulators,” Opt. Lett.34, 3878–3880 (2009). [CrossRef] [PubMed]
  28. W. D. Sacher, E. J. Zhang, B. A. Kruger, and J. K. S. Poon, “High-speed laser modulation beyond the relaxation resonance frequency limit,” Opt. Express18, 7047–7054 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited