OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9792–9806

Compact electron acceleration and bunch compression in THz waveguides

Liang Jie Wong, Arya Fallahi, and Franz X. Kärtner  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9792-9806 (2013)
http://dx.doi.org/10.1364/OE.21.009792


View Full Text Article

Enhanced HTML    Acrobat PDF (2106 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically investigate the acceleration and bunch compression capabilities of 20 mJ, 0.6 THz-centered coherent terahertz pulses in optimized metallic dielectric-loaded cylindrical waveguides. In particular, we theoretically demonstrate the acceleration of 1.6 pC and 16 pC electron bunches from 1 MeV to 10 MeV over an interaction distance of 20mm, the compression of a 1.6 pC 1 MeV bunch from 100 fs to 2 fs (50 times compression) over an interaction distance of about 18mm, and the compression of a 1.6 pC 10 MeV bunch from 100 fs to 1.61 fs (62 times) over an interaction distance of 42 cm. The obtained results show the promise of coherent THz pulses in realizing compact electron acceleration and bunch compression schemes.

© 2013 OSA

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(350.5400) Other areas of optics : Plasmas

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 27, 2013
Revised Manuscript: March 26, 2013
Manuscript Accepted: April 2, 2013
Published: April 12, 2013

Citation
Liang Jie Wong, Arya Fallahi, and Franz X. Kärtner, "Compact electron acceleration and bunch compression in THz waveguides," Opt. Express 21, 9792-9806 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys.81(3), 1229–1285 (2009). [CrossRef]
  2. T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005). [CrossRef] [PubMed]
  3. G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett.78(17), 3314–3317 (1997). [CrossRef]
  4. A. Karmakar and A. Pukhov, “Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses,” Laser Part. Beams25(03), 371–377 (2007). [CrossRef]
  5. S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005). [CrossRef]
  6. A. Mizrahi and L. Schächter, “Optical Bragg accelerators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1 Pt 2), 016505 (2004). [CrossRef] [PubMed]
  7. Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed‐laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett.68(6), 753–755 (1996). [CrossRef]
  8. T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Phys. Rev. ST Accel. Beams9(11), 111301 (2006). [CrossRef]
  9. W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988). [CrossRef] [PubMed]
  10. G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012). [CrossRef] [PubMed]
  11. S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012). [CrossRef]
  12. M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D44(8), 083001 (2011). [CrossRef]
  13. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express18(12), 12311–12327 (2010). [CrossRef] [PubMed]
  14. J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express19(16), 15090–15097 (2011). [CrossRef] [PubMed]
  15. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett.38(5), 796–798 (2013). [CrossRef] [PubMed]
  16. J. Hebling, J. A. Fülöp, M. I. Mechler, L. Pálfalvi, C. Tőke, and G. Almási, “Optical manipulation of relativistic electron beams using THz pulses,” arXiv:1109.6852.
  17. R. B. Yoder and J. B. Rosenzweig, “Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power,” Phys. Rev. ST Accel. Beams8(11), 111301 (2005). [CrossRef]
  18. G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys.74(9), 096101 (2011). [CrossRef]
  19. H. Yoneda, K. Tokuyama, K. Ueda, H. Yamamoto, and K. Baba, “High-power terahertz radiation emitter with a diamond photoconductive switch array,” Appl. Opt.40(36), 6733–6736 (2001). [CrossRef] [PubMed]
  20. V. V. Kubarev, “Optical properties of CVD-diamond in terahertz and infrared ranges,” Nucl. Instrum. Methods Phys. Res. A603(1-2), 22–24 (2009). [CrossRef]
  21. J. H. Kim, J. Han, M. Yoon, and S. Y. Park, “Theory of wakefields in a dielectric-filled cavity,” Phys. Rev. ST Accel. Beams13(7), 071302 (2010). [CrossRef]
  22. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Oxford 1987).
  23. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  24. GPT User Manual, Pulsar Physics.
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992, pp. 714–720).
  26. T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for computing the sample variance: Analysis and recommendations,” Am. Stat.37, 242–247 (1983).
  27. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  28. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000). [CrossRef]
  29. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification,” Opt. Lett.32(4), 433–435 (2007). [CrossRef] [PubMed]
  30. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009). [CrossRef] [PubMed]
  31. T. Grosjean, F. Baida, R. Adam, J.-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau, “Linear to radial polarization conversion in the THz domain using a passive system,” Opt. Express16(23), 18895–18909 (2008). [CrossRef] [PubMed]
  32. J. Yang, N. Naruse, K. Kan, T. Kondoh, Y. Yoshida, and K. Tanimura, “Femtosecond electron guns for ultrafast electron diffraction,” International Particle Accelerator Conference (IPAC’2012), paper FRXBB01.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited