OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9851–9861

Femtosecond multi-beam interference lithography based on dynamic wavefront engineering

Qiang Zhou, Wenzheng Yang, Fengtao He, Razvan Stoian, Rongqing Hui, and Guanghua Cheng  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9851-9861 (2013)
http://dx.doi.org/10.1364/OE.21.009851


View Full Text Article

Enhanced HTML    Acrobat PDF (2315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for precise multi-spot parallel ultrafast laser material structuring is presented based on multi-beam interference generated by dynamic spatial phase engineering. A Spatial Light Modulator (SLM) and digitally programming of phase masks are used to accomplish the function of a multi-facet pyramid lens, so that the laser beam can be spatially modulated to create beam multiplexing and desired two-dimensional (2D) multi-beam interference patterns. Various periodic microstructures on metallic alloy surfaces are fabricated with this technique. A method of preparing extended scale periodic microstructures by loading dynamic time-varying phases is also demonstrated. Scanning electron microscopy (SEM) reveals the period and morphology of the microstructures created using this technique. The asymmetry of interference modes generated from the beams with asymmetric wave vector distributions is equally explored. The flexibility of programming the period of the microstructures is demonstrated.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Laser Microfabrication

History
Original Manuscript: January 16, 2013
Revised Manuscript: March 29, 2013
Manuscript Accepted: March 31, 2013
Published: April 12, 2013

Citation
Qiang Zhou, Wenzheng Yang, Fengtao He, Razvan Stoian, Rongqing Hui, and Guanghua Cheng, "Femtosecond multi-beam interference lithography based on dynamic wavefront engineering," Opt. Express 21, 9851-9861 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater.8(6), 580–584 (2006). [CrossRef]
  2. S. H. Kim, I. B. Sohn, and S. Jeong, “Parallel ripple formation during femtosecond laser grooving of ceramic,” Appl. Phys., A Mater. Sci. Process.103(4), 1053–1057 (2011). [CrossRef]
  3. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003). [CrossRef] [PubMed]
  4. Y. H. Han and S. L. Qu, “Controllable fabrication of periodic hexagon lattice on glass by interference of three replicas split from single femtosecond laser pulse,” Laser Phys.19(5), 1067–1071 (2009). [CrossRef]
  5. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett.34(12), 1783–1785 (2009). [CrossRef] [PubMed]
  6. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000). [CrossRef]
  7. S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005). [CrossRef]
  8. J. H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003). [CrossRef]
  9. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  10. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett.26(21), 1642–1644 (2001). [CrossRef] [PubMed]
  11. X. Jia, T. Q. Jia, L. E. Ding, P. X. Xiong, L. Deng, Z. R. Sun, Z. G. Wang, J. R. Qiu, and Z. Z. Xu, “Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams,” Opt. Lett.34(6), 788–790 (2009). [CrossRef] [PubMed]
  12. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006). [CrossRef] [PubMed]
  13. J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002). [CrossRef]
  14. Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002). [CrossRef]
  15. R. C. Gauthier and A. Ivanov, “Production of quasi-crystal template patterns using a dual beam multiple exposure technique,” Opt. Express12(6), 990–1003 (2004). [CrossRef] [PubMed]
  16. N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express14(22), 10746–10752 (2006). [CrossRef] [PubMed]
  17. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001). [CrossRef]
  18. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003). [CrossRef]
  19. Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012). [CrossRef]
  20. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006). [CrossRef] [PubMed]
  21. P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication,” Opt. Lett.36(12), 2302–2304 (2011). [CrossRef] [PubMed]
  22. M. Lei, B. L. Yao, and R. A. Rupp, “Structuring by multi-beam interference using symmetric pyramids,” Opt. Express14(12), 5803–5811 (2006). [CrossRef] [PubMed]
  23. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express16(20), 15942–15948 (2008). [CrossRef] [PubMed]
  24. M. J. Escuti and G. P. Crawford, “Holographic photonic crystals,” Opt. Eng.43(9), 1973–1987 (2004). [CrossRef]
  25. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited