OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9890–9898

Measurement and modification of biexciton-exciton time correlations

Tobias Huber, Ana Predojević, Hashem Zoubi, Harishankar Jayakumar, Glenn S. Solomon, and Gregor Weihs  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9890-9898 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photons which are generated in a two-photon cascade process have an underlying time correlation since the spontaneous emission of the upper level populates the intermediate state. This correlation leads to a reduction of the purity of the photon emitted from the intermediate state. Here we characterize this time correlation for the biexciton-exciton cascade of an InAs/GaAs quantum dot. We show that the correlation can be reduced by tuning the biexciton transition in resonance to a planar distributed Bragg reflector cavity. The enhanced and inhibited emission into the cavity accelerates the biexciton emission and slows down the exciton emission thus reduces the correlation and increases the purity of the exciton photon. This is essential for schemes like creating time-bin entangled photon pairs from quantum dot systems.

© 2013 OSA

OCIS Codes
(000.1600) General : Classical and quantum physics
(130.5990) Integrated optics : Semiconductors
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: February 19, 2013
Revised Manuscript: April 4, 2013
Manuscript Accepted: April 4, 2013
Published: April 12, 2013

Tobias Huber, Ana Predojević, Hashem Zoubi, Harishankar Jayakumar, Glenn S. Solomon, and Gregor Weihs, "Measurement and modification of biexciton-exciton time correlations," Opt. Express 21, 9890-9898 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000). [CrossRef] [PubMed]
  2. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
  3. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998). [CrossRef]
  4. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  5. D. F. Walls and G. J. MilburnQuantum Optics (Springer, 1994).
  6. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett.84, 2513–2516 (2000). [CrossRef] [PubMed]
  7. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001). [CrossRef] [PubMed]
  8. J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002). [CrossRef]
  9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000). [CrossRef] [PubMed]
  10. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006). [CrossRef] [PubMed]
  11. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010). [CrossRef] [PubMed]
  12. A. Muller, W. Fang, J. Lawall, and G. S. Solomon “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103, 217402 (2009). [CrossRef]
  13. R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006). [CrossRef]
  14. J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008). [CrossRef]
  15. N. Gisin, R. Passy, J. Bishoff, and B. Perny “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett.5, 819–821 (1993). [CrossRef]
  16. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin “Violation of Bell inequalities by photons more than 10 Km apart,” Phys. Rev. Lett.81, 3563–3566 (1998). [CrossRef]
  17. D. Stucki, H. Zbinden, and N. Gisin “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt.52, 2637–2648 (2005). [CrossRef]
  18. C. Simon and J.-P. Poizat “Creating single time-bin-entangled photon pairs,” Phys. Rev. Lett.94, 030502 (2005). [CrossRef] [PubMed]
  19. P. K. Pathak and S. Hughes “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B83, 245301 (2011). [CrossRef]
  20. G. JaegerQuantum Information (Springer, 2007).
  21. B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997). [CrossRef]
  22. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004). [CrossRef] [PubMed]
  23. G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006). [CrossRef]
  24. C. de Mello Donega, M. Bode, and A. Meijerink “Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B74, 085320 (2006). [CrossRef]
  25. J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998). [CrossRef]
  26. E. M. Purcell “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  27. S. Haroche, “Cavity quantum electrodynamics,” Fundamental systems in quantum optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin (eds.), Les Houches summer school, Session LIII, p.767 (North-Holland, Amsterdam, 1992).
  28. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998). [CrossRef]
  29. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000). [CrossRef]
  30. D. Englund, I. Fushman, A. Faraon, and J. Vuckovic, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Photonic. Nanostruct.7, 56–62 (2009). [CrossRef]
  31. H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013). [CrossRef]
  32. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett.82, 2594–2597 (1999). [CrossRef]
  33. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996). [CrossRef] [PubMed]
  34. W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59, 169–181 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited