OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9974–9981

Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators

M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu, T. Y. Liow, Q. G. Lo, O. Vänskä, S. Honkanen, and I. Tittonen  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9974-9981 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a new method for accessing the broad-bandwidth polarization-independent operation of a microring resonator based on the standard photonic nanostrip waveguides. The method employs the selective application of atomic layer deposition to form highly uniform TiO2 overlayers with the specific dispersion properties. The wide operation window is achieved by matching the wavelength dependencies of the free spectral ranges of the two orthogonal polarizations.

© 2013 OSA

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(260.2030) Physical optics : Dispersion
(310.1860) Thin films : Deposition and fabrication
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: January 31, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 5, 2013
Published: April 15, 2013

M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu, T. Y. Liow, Q. G. Lo, O. Vänskä, S. Honkanen, and I. Tittonen, "Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators," Opt. Express 21, 9974-9981 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010). [CrossRef]
  2. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011). [CrossRef]
  3. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett.29, 2861–2863 (2004). [CrossRef]
  4. T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).
  5. M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).
  6. W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005). [CrossRef]
  7. D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, “Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering,” Proc. SPIE6477, Invited Paper (2007). [CrossRef]
  8. Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwiched nanowires,” IEEE Photon. Technol. Lett.19, 759–761 (2007). [CrossRef]
  9. C. H. Kwan and K. S. Chiang, “Study of polarization-dependent coupling in optical waveguide directional couplers by the effective-index method with built-in perturbation correction,” J. Lightwave Technol.20, 1018–1026 (2002). [CrossRef]
  10. S. Park, K. J. Kim, J. M. Lee, I. G. Kim, and G. Kim, “Adjusting resonant wavelengths and spectral shapes of ring resonators using a cladding SiN layer or KOH solution,” Opt. Express17, 11884–11891 (2009). [CrossRef] [PubMed]
  11. Y. Kokubun, N. Kobayashi, and T. Sato, “UV trimming of polarization-independent microring resonator by internal stress and temperature control,” Opt. Express18, 906–916 (2010). [CrossRef] [PubMed]
  12. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett.37, 3114–3116 (2012). [CrossRef] [PubMed]
  13. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007). [CrossRef]
  14. R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys.97, 121301 (2005). [CrossRef]
  15. M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “ALD-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol.30, 2488–2493 (2012). [CrossRef]
  16. A. Säynätjoki, L. Karvonen, M. Hiltunen, X. Tu, T. Y. Liow, A. Tervonen, C. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express19, 26275–26282 (2011). [CrossRef]
  17. Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett.89, 061118 (2006). [CrossRef]
  18. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36, 321–322 (2000). [CrossRef]
  19. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19, 11529–11538 (2011). [CrossRef] [PubMed]
  20. L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012). [CrossRef]
  21. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt.49, 4321–4325 (2010). [CrossRef] [PubMed]
  22. F. Morichetti, A. Melloni, and M. Martinelli, “Effects of polarization rotation in optical ring-resonator-based devices,” J. Lightwave Technol.24, 573–585 (2006). [CrossRef]
  23. A. Delâge, D. X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-dependent model of a ring resonator sensor excited by a directional coupler,” J. Lightwave Technol.27, 1172–1180 (2009). [CrossRef]
  24. W. R. McKinnon, D. X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express17, 18971–18982 (2009). [CrossRef]
  25. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on chip optical interconnects,” Opt. Express15, 11934–11941 (2007). [CrossRef] [PubMed]
  26. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited