OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10460–10466

Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3:Mo

Tian Tian, Yongfa Kong, Shiguo Liu, Wei Li, Shaolin Chen, Romano Rupp, and Jingjun Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10460-10466 (2013)
http://dx.doi.org/10.1364/OE.21.010460


View Full Text Article

Enhanced HTML    Acrobat PDF (2174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A series of LN:Mo,Zr and LN:Mo,Mg crystals with different doping concentrations were grown and their holographic properties were investigated from UV to the visible range. Each crystal allows for holographic storage from UV to the visible as LN:Mo. When the concentration of MgO is enhanced to 6.5mol%, the response time can be dramatically shortened to 0.22 s, 0.33 s, 0.37 s and 1.2 s for 351, 488, 532, and 671 nm laser, respectively. The results show that LN:Mo,Mg is a promising candidate for all-color holographic volume storage with fast response.

© 2013 OSA

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Materials

History
Original Manuscript: March 4, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 13, 2013
Published: April 22, 2013

Citation
Tian Tian, Yongfa Kong, Shiguo Liu, Wei Li, Shaolin Chen, Romano Rupp, and Jingjun Xu, "Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3:Mo," Opt. Express 21, 10460-10466 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi201(2), 253–283 (2004) (a). [CrossRef]
  2. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966). [CrossRef]
  3. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B67(2), 131–150 (1998). [CrossRef]
  4. W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev.33, 94–109 (1972).
  5. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998). [CrossRef]
  6. D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, “Holographic recording in specially doped lithium niobate crystals,” Opt. Express2(12), 491–502 (1998). [CrossRef] [PubMed]
  7. G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO,” J. Opt. Soc. Am.70, 631–635 (1980).
  8. T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett.15(18), 996–998 (1990). [CrossRef] [PubMed]
  9. Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3,” Appl. Phys. Lett.66(3), 280–281 (1995). [CrossRef]
  10. E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004). [CrossRef]
  11. G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, and C. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe,Mg crystals,” Proc. SPIE2529, 14–17 (1995). [CrossRef]
  12. Y. Kong, S. Wu, S. Liu, S. Chen, and J. Xu, “Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals,” Appl. Phys. Lett.92(25), 251107 (2008). [CrossRef]
  13. T. Tian, Y. Kong, S. Liu, W. Li, L. Wu, S. Chen, and J. Xu, “Photorefraction of molybdenum-doped lithium niobate crystals,” Opt. Lett.37(13), 2679–2681 (2012). [CrossRef] [PubMed]
  14. H. Kongelnic, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).
  15. F. Xin, G. Zhang, F. Bo, H. Sun, Y. Kong, J. Xu, T. Volk, and N. M. Rubinina, “Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals,” J. Appl. Phys.107(3), 033113 (2010). [CrossRef]
  16. Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, X. Zhang, R. Rupp, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007). [CrossRef]
  17. Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, and H. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A196(1-2), 128–132 (1994). [CrossRef]
  18. S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006). [CrossRef]
  19. Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH− absorption spectra of pure lithium niobate crystals,” J. Phys. Condens. Matter11(9), 2139–2143 (1999). [CrossRef]
  20. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998). [CrossRef] [PubMed]
  21. S. O. Grim and L. J. Matienzo, “X-ray photoelectron spectroscopy of inorganic and organometallic compounds of molybdenum,” Inorg. Chem.14(5), 1014–1018 (1975). [CrossRef]
  22. F. Liu, Y. Kong, W. Li, H. Liu, S. Liu, S. Chen, X. Zhang, R. Rupp, and J. Xu, “High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals,” Opt. Lett.35(1), 10–12 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited