OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10779–10791

Exactly solvable toy model for surface plasmon amplification by stimulated emission of radiation

D. G. Baranov, E.S. Andrianov, A. P. Vinogradov, and A. A. Lisyansky  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10779-10791 (2013)
http://dx.doi.org/10.1364/OE.21.010779


View Full Text Article

Enhanced HTML    Acrobat PDF (1470 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an exactly solvable electrodynamical model for surface plasmon amplification by stimulated emission of radiation (spaser). The gain medium is described in terms of the nonlinear permittivity with negative losses. The model demonstrates the main feature of a spaser: a self-oscillating state (spasing) arising without an external driving field if the pumping exceeds some threshold value. In addition, it properly describes synchronization of a spaser by an external field within the Arnold tongue and the possibility of compensating for Joule losses when the pumping is below threshold. The model also gives correct qualitative dependencies of spaser characteristics on pumping.

© 2013 OSA

OCIS Codes
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 19, 2013
Revised Manuscript: April 4, 2013
Manuscript Accepted: April 22, 2013
Published: April 25, 2013

Citation
D. G. Baranov, E.S. Andrianov, A. P. Vinogradov, and A. A. Lisyansky, "Exactly solvable toy model for surface plasmon amplification by stimulated emission of radiation," Opt. Express 21, 10779-10791 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. I. Bozhevolniy, ed., Plasmonic. Nanoguides and Circuits (Pan Stanford Publishing, 2009).
  4. S. V. Gaponenko, Introduction to Nanophotonics (Cambridge University, 2010).
  5. Z. M. Wang and A. Neogi, eds., Nanoscale Photonics and Optoelectronics (Springer, 2010).
  6. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  7. R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2008).
  8. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  9. S. A. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003). [CrossRef]
  10. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett.31(20), 3022–3024 (2006). [CrossRef] [PubMed]
  11. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett.31, 2169–2171 (2006). [CrossRef] [PubMed]
  12. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007). [CrossRef]
  13. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008). [CrossRef]
  14. A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12(2), 024013 (2010). [CrossRef]
  15. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010). [CrossRef] [PubMed]
  16. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011). [CrossRef] [PubMed]
  17. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36(21), 4302–4304 (2011). [CrossRef] [PubMed]
  18. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  19. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005). [CrossRef]
  20. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  21. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  22. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011). [CrossRef] [PubMed]
  23. C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011). [CrossRef] [PubMed]
  24. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012). [CrossRef] [PubMed]
  25. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71(11), 115409 (2005). [CrossRef]
  26. M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008). [CrossRef]
  27. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010). [CrossRef]
  28. I. R. Gabitov, B. Kennedy, and A. I. Maimistov, “Coherent amplification of optical pulses in metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 401–409 (2010). [CrossRef]
  29. V. V. Klimov, Y. N. Istomin, and Y. A. Kosevich, “Plasma phenomena in nanostructures and neutron stars,” Phys. Usp.51(8), 839–859 (2008). [CrossRef]
  30. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  31. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010). [CrossRef] [PubMed]
  32. E. S. Andrianov, D. G. Baranov, A. A. Puhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in metamaterials,” http://arxiv.org/abs/1209.0422 .
  33. A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: A study of their quantum properties,” Phys. Rev. A79(4), 043824 (2009). [CrossRef]
  34. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012). [CrossRef]
  35. A. N. Lagarkov, A. K. Sarychev, V. N. Kissel, and G. Tartakovsky, “Superresolution and enhancement in metamaterials,” Phys. Usp.52(9), 959–967 (2009). [CrossRef]
  36. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  37. A. A. Zyablovsky, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Lasing in a gain slab as a consequence of the causality principle,” J. Commun. Technol. Electron.56(9), 1139–1145 (2011). [CrossRef]
  38. S. Solimeno, B. Crosignani, and P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, 1986).
  39. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express15(5), 2622–2653 (2007). [CrossRef] [PubMed]
  40. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  41. X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett.35(15), 2535–2537 (2010). [CrossRef] [PubMed]
  42. A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85(11), 115429 (2012). [CrossRef]
  43. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004). [CrossRef]
  44. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (John Wiley & Sons Inc, 1969).
  45. P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988). [CrossRef]
  46. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  47. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  48. C. F. Boheren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1983)
  49. A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012). [CrossRef]
  50. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express16(24), 19785–19798 (2008). [CrossRef] [PubMed]
  51. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Medium (Cambridge University, 2011).
  52. M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett.106(15), 156802 (2011). [CrossRef] [PubMed]
  53. A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012). [CrossRef]
  54. J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett.100(1), 011105 (2012). [CrossRef]
  55. J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence,” Opt. Express20(14), 15309–15325 (2012). [CrossRef] [PubMed]
  56. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).
  57. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley-VCH, 1995).
  58. A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys.106(7), 073104 (2009). [CrossRef]
  59. R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett.108(9), 093901 (2012). [CrossRef] [PubMed]
  60. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited