OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A131–A145

An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles

Albert Lin, Sze-Ming Fu, Yen-Kai Chung, Shih-yun Lai, and Chi-Wei Tseng  »View Author Affiliations

Optics Express, Vol. 21, Issue S1, pp. A131-A145 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1951 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: October 8, 2012
Revised Manuscript: November 24, 2012
Manuscript Accepted: December 3, 2012
Published: December 13, 2012

Albert Lin, Sze-Ming Fu, Yen-Kai Chung, Shih-yun Lai, and Chi-Wei Tseng, "An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles," Opt. Express 21, A131-A145 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  2. J. R. Krenn, “Nanoparticle waveguides: Watching energy transfer,” Nat. Mater. 2(4), 210–211 (2003). [CrossRef] [PubMed]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
  4. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  5. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34(23), 3725–3727 (2009). [CrossRef] [PubMed]
  6. F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011). [CrossRef] [PubMed]
  7. F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010). [CrossRef]
  8. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  9. D. Cheyns, B. P. Rand, B. Verreet, J. Genoe, J. Poortmans, P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008). [CrossRef]
  10. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  11. N. Lagos, M. M. Sigalas, E. Lidorikis, “Theory of plasmonic near-field enhanced absorption in solar cells,” Appl. Phys. Lett. 99(6), 063304 (2011). [CrossRef]
  12. K. Q. Le, A. Abass, B. Maes, P. Bienstman, A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012). [CrossRef] [PubMed]
  13. A. Meyer, H. Ade, “The effect of angle of incidence on the optical field distribution within thin film organic solar cells,” J. Appl. Phys. 106(11), 113101 (2009). [CrossRef]
  14. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010). [CrossRef]
  15. J. N. Munday, H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett. 11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  16. U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011). [CrossRef]
  17. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011). [CrossRef] [PubMed]
  18. W. E. I. Sha, W. C. H. Choy, W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36(4), 478–480 (2011). [CrossRef] [PubMed]
  19. H.-Y. Lin, Y. Kuo, C.-Y. Liao, C. C. Yang, Y.-W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(S1), A104–A118 (2012). [CrossRef] [PubMed]
  20. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011). [CrossRef]
  21. Y.-W. Jiang, L. D.-C. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009). [CrossRef] [PubMed]
  22. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004). [CrossRef]
  23. J. M. Khoshman, M. E. Kordesch, “Optical constants and band edge of amorphous zinc oxide thin films,” Thin Solid Films 515(18), 7393–7399 (2007). [CrossRef]
  24. S. J. Kang, Y. H. Joung, “Influence of substrate temperature on the optical and piezoelectric properties of ZnO thin films deposited by rf magnetron sputtering,” Appl. Surf. Sci. 253(17), 7330–7335 (2007). [CrossRef]
  25. C. Munuera, J. Zuniga-Perez, J. F. Rommeluere, V. Sallet, R. Triboulet, F. Soria, V. Munoz-Sanjose, C. Ocal, “Morphology of ZnO grown by MOCVD on sapphire substrates,” J. Cryst. Growth 264(1-3), 70–78 (2004). [CrossRef]
  26. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors and its applications for thin film solar cells,” Thin Solid Films 455–456, 388–392 (2004).
  27. H. Kim, A. Pique, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000). [CrossRef]
  28. E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).
  29. A. Lin, J. D. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008). [CrossRef]
  30. P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed. (Prentice-Hall, 2006).
  31. C. AB, Comsol multiphysics RF module user guide V 3.3 (2006).
  32. Synopsys, “Sentaurus device EMW user manual V. X-2005.10,” (2005), pp. 78–79.
  33. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012). [CrossRef]
  34. M. Y. Kuo, J. Y. Hsing, T. T. Chiu, C. N. Li, W. T. Kuo, T. S. Lay, M. H. Shih, “Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors,” Opt. Express 20(S6Suppl 6), A828–A835 (2012). [CrossRef] [PubMed]
  35. B. P. Rand, P. Peumans, S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited