OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A23–A35

Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles

Antti M. Pennanen and J. Jussi Toppari  »View Author Affiliations

Optics Express, Vol. 21, Issue S1, pp. A23-A35 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

© 2012 OSA

OCIS Codes
(000.2190) General : Experimental physics
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: September 12, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: November 5, 2012
Published: November 26, 2012

Antti M. Pennanen and J. Jussi Toppari, "Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles," Opt. Express 21, A23-A35 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996). [CrossRef]
  2. H. R. Stuart, D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998). [CrossRef]
  3. H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998). [CrossRef]
  4. D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  5. S. P. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–30 (2008). [CrossRef] [PubMed]
  6. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  7. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006). [CrossRef]
  8. K. R. Catchpole, S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006). [CrossRef]
  9. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006). [CrossRef]
  10. S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 1–8 (2007). [CrossRef]
  11. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007). [CrossRef]
  12. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–800 (2008). [CrossRef] [PubMed]
  13. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
  14. C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008). [CrossRef]
  15. K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008). [CrossRef]
  16. Y. A. Akimov, W. S. Koh, K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–205 (2009). [CrossRef] [PubMed]
  17. F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009). [CrossRef]
  18. S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009). [CrossRef]
  19. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009). [CrossRef]
  20. F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 1–3 (2010). [CrossRef]
  21. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010). [CrossRef]
  22. F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010). [CrossRef] [PubMed]
  23. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19, A146–56 (2011). [CrossRef] [PubMed]
  24. W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011). [CrossRef]
  25. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011). [CrossRef]
  26. Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011). [CrossRef]
  27. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011). [CrossRef]
  28. A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cells,” plasmonics (2012). [CrossRef]
  29. T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012). [CrossRef] [PubMed]
  30. Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012). [CrossRef]
  31. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited