OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A96–A110

High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics

Sean Molesky, Christopher J. Dewalt, and Zubin Jacob  »View Author Affiliations


Optics Express, Vol. 21, Issue S1, pp. A96-A110 (2013)
http://dx.doi.org/10.1364/OE.21.000A96


View Full Text Article

Enhanced HTML    Acrobat PDF (11381 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method for engineering thermally excited far field electromagnetic radiation using epsilon-near-zero metamaterials and introduce a new class of artificial media: epsilon-near-pole metamaterials. We also introduce the concept of high temperature plasmonics as conventional metamaterial building blocks have relatively poor thermal stability. Using our approach, the angular nature, spectral position, and width of the thermal emission and optical absorption can be finely tuned for a variety of applications. In particular, we show that these metamaterial emitters near 1500 K can be used as part of thermophotovoltaic devices to surpass the full concentration Shockley-Queisser limit of 41%. Our work paves the way for high temperature thermal engineering applications of metamaterials.

© 2012 OSA

OCIS Codes
(260.2160) Physical optics : Energy transfer
(350.6050) Other areas of optics : Solar energy
(160.3918) Materials : Metamaterials

ToC Category:
Thermophotovoltaics

History
Original Manuscript: September 6, 2012
Revised Manuscript: November 5, 2012
Manuscript Accepted: November 7, 2012
Published: December 4, 2012

Virtual Issues
December 17, 2012 Spotlight on Optics

Citation
Sean Molesky, Christopher J. Dewalt, and Zubin Jacob, "High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics," Opt. Express 21, A96-A110 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S1-A96


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Taylor, O. Lavanagne d’Ortigue, N. Trudeau, and M. Francoeur, “Energy efficiency indicators for pubilc electricity production from fossil fuels,” Tech. Rep., International Energy Agency (2008).
  2. U. Buskies, “The efficiency of coal-fired combined-cycle powerplants,” Appl. Therm. Eng.16, 959–974 (1996). [CrossRef]
  3. M. Rosen and I. Dincer, “Exergoeconomic analysis of power plants operating on various fuels,” Appl. Therm. Eng.23, 643–658 (2003). [CrossRef]
  4. E. Chaisson, “Long-term global heating from energy usage,” Eos Trans. Am. Geophys. Union.89, 253–260.
  5. A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells94, 2137–2147 (2010). [CrossRef]
  6. W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.1640, 510–519 (1961). [CrossRef]
  7. B. Wedlockt, “Thermo-photo-voltaic energy conversion,” Proc. of the IEEE51, 694–698 (1963). [CrossRef]
  8. “ www.jxcrystals.com , www.mtpv.com ,” (2012).
  9. J. Gee, J. Moreno, S. Lin, and J. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in “Photovoltaic specialists, 2002. Conf. Proc. 29th IEEE,” (2002), pp. 896–899.
  10. J. Mason, D. Adams, Z. Johnson, S. Smith, A. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express18, 25192–8 (2010). [CrossRef] [PubMed]
  11. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012). [CrossRef]
  12. J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98, 241105 (2011). [CrossRef]
  13. M. Maksimovic, M. Hammer, and Z. Jaksic, “Thermal radiation antennas made of multilayer structures containing negative index metamaterials,” Proc. of SPIE6896, 689605 (2008). [CrossRef]
  14. X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 4–7 (2011). [CrossRef]
  15. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6, 549–554 (2011). [CrossRef] [PubMed]
  16. S. Han and D. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express18, 4685–4687 (2010). [CrossRef]
  17. Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun.269, 411–417 (2007). [CrossRef]
  18. E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys.111, 084316 (2012). [CrossRef]
  19. P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett.98, 073111 (2011). [CrossRef]
  20. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express17, 15145–15159 (2009). [CrossRef] [PubMed]
  21. C. Schuler, C. Wolff, K. Busch, and M. Florescu, “Thermal emission from finite photonic crystals,” Appl. Phys. Lett.95, 241103 (2009). [CrossRef]
  22. Z. Li, “Modified thermal radiation in three-dimensional photonic crystals,” Phys. Rev. B66, 1–4 (2002). [CrossRef]
  23. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett.29, 863–865 (2004). [CrossRef] [PubMed]
  24. J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtzs reciprocity principle and Kirchhoffs law,” J. Opt. Soc. Am. A15, 2735–2744 (1998). [CrossRef]
  25. A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells94, 2137–2147 (2010). [CrossRef]
  26. G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6, 107– 111 (2011). [CrossRef] [PubMed]
  27. A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 1–13 (2007). [CrossRef]
  28. N. Ashcroft and N. Mermin, “Solid state physics,” (1968).
  29. B. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nature Mater.2, 749–754 (2003). [CrossRef]
  30. R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102, 1–4 (2009). [CrossRef]
  31. J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science321, 930 (2008). [CrossRef] [PubMed]
  32. J. Elser, R. Wangberg, V. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89, 261102 (2006). [CrossRef]
  33. G. D’Aguanno, N. Mattiucci, A. Alu, C. Argyropoulos, J. Foreman, and M. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express20, 9784–9789 (2012). [CrossRef]
  34. L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett.97, 131107 (2010). [CrossRef]
  35. G. Agarwal and D. Pattanayak, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B10, 1447– 1475 (1974). [CrossRef]
  36. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B1318, 4370–4379 (1972). [CrossRef]
  37. K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys.81, 7764–7772 (1997). [CrossRef]
  38. G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL4, 295–297 (2010). [CrossRef]
  39. H. Pierson, Handbook of Refractory Carbides and Nitrides (William Andrews, Inc.1996).
  40. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1, 1090–1099 (2011). [CrossRef]
  41. Q. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energy Mater. Sol. Cells62, 63–74 (2000). [CrossRef]
  42. J. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37, 768–779 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited