OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S2 — Mar. 11, 2013
  • pp: A268–A275

Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption

Matteo Burresi, Filippo Pratesi, Kevin Vynck, Mauro Prasciolu, Massimo Tormen, and Diederik S. Wiersma  »View Author Affiliations


Optics Express, Vol. 21, Issue S2, pp. A268-A275 (2013)
http://dx.doi.org/10.1364/OE.21.00A268


View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The surface of thin-film solar cells can be tailored with photonic nanostructures to allow light trapping in the absorbing medium. This in turn increases the optical thickness of the film and thus enhances their absorption. Such a coherent light trapping is generally accomplished with deterministic photonic architectures. Here, we experimentally explore the use of a different nanostructure, a disordered one, for this purpose. We show that the disorder-induced modes in the film allow improvements in the absorption over a broad range of frequencies and impinging angles.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(290.0290) Scattering : Scattering
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photovoltaics

History
Original Manuscript: November 28, 2012
Revised Manuscript: January 11, 2013
Manuscript Accepted: January 14, 2013
Published: February 20, 2013

Citation
Matteo Burresi, Filippo Pratesi, Kevin Vynck, Mauro Prasciolu, Massimo Tormen, and Diederik S. Wiersma, "Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption," Opt. Express 21, A268-A275 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S2-A268


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, “Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers,” Nano Lett.6, 424–429 (2006). [CrossRef] [PubMed]
  2. J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, “High efficiency InGaAs solar cells on si by InP layer transfer,” App. Phys. Lett.91, 012108 (2007). [CrossRef]
  3. C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Sol. Energ. Mat. Sol. Cells91, 1529–1598 (2007). [CrossRef]
  4. G. Brown and J. Wu, “Third generation photovoltaics,” Laser & Photon. Rev.3, 394–405 (2009). [CrossRef]
  5. H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nature Photon.3, 649–653 (2009). [CrossRef]
  6. F. C. Krebs, “Fabrication and processing of polymer solar cells: a review of printing and coating techniques,” Sol. Energ. Mat. Sol. Cells93, 394–412 (2009). [CrossRef]
  7. V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energ. Mat. Sol. Cells84, 317 (2004). [CrossRef]
  8. P. Spinelli, M. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on sub-wavelength surface mie resonators,” Nature Commun.3, 692 (2012). [CrossRef]
  9. Y. Park, E. Drouard, O. E. Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express17, 14312–14321 (2009). [CrossRef] [PubMed]
  10. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010). [CrossRef] [PubMed]
  11. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater.9, 205–213 (2010). [CrossRef]
  12. V. E. Ferry, M. A. Verschuuren, M. C. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si:h solar cells,” Nano Lett.11, 4239–4245 (2011). [CrossRef] [PubMed]
  13. X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: Design, fabrication and experimental investigation,” Sol. Energ. Mat. Sol. Cells95(Supp. 1), S32–S38 (2011). [CrossRef]
  14. S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” App. Phys. Lett.100, 053113 (2012). [CrossRef]
  15. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” PNAS107, 17491–17496 (2010). [CrossRef] [PubMed]
  16. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12, 214–218 (2012). [CrossRef]
  17. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1d and 2d periodic patterns,” Opt. Express20, A224–A244 (2012). [CrossRef] [PubMed]
  18. K. Kempa, M. J. Naughton, Z. F. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” App. Phys. Lett.95, 233121 (2009). [CrossRef]
  19. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Sderstrm, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express18, A335–A341 (2010). [CrossRef] [PubMed]
  20. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012). [CrossRef]
  21. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” App. Phys. Lett.100, 181110 (2012). [CrossRef]
  22. P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Engineering gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett.37, 4868–4870 (2012). [CrossRef] [PubMed]
  23. M. M. Sigalas, C. M. Soukoulis, C.-T. Chan, and D. Turner, “Localization of electromagnetic waves in two-dimensional disordered systems,” Phys. Rev. B53, 8340–8348 (1996). [CrossRef]
  24. C. Vanneste and P. Sebbah, “Complexity of two-dimensional quasimodes at the transition from weak scattering to anderson localization,” Phys. Rev. A79, 041802 (2009). [CrossRef]
  25. F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. D. Rossi, S. Combrie, and D. S. Wiersma, “Anderson localization of near-visible light in two dimensions,” Opt. Lett.36, 127–129 (2011). [CrossRef] [PubMed]
  26. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater.11, 1017–1022 (2012).
  27. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  28. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 2005).
  29. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett.109, 173901 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited