OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A372–A381

Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires

Inès Massiot, Clément Colin, Christophe Sauvan, Philippe Lalanne, Pere Roca i Cabarrocas, Jean-Luc Pelouard, and Stéphane Collin  »View Author Affiliations

Optics Express, Vol. 21, Issue S3, pp. A372-A381 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2590 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a design to confine light absorption in flat and ultra-thin amorphous silicon solar cells with a one-dimensional silver grating embedded in the front window of the cell. We show numerically that multi-resonant light trapping is achieved in both TE and TM polarizations. Each resonance is analyzed in detail and modeled by Fabry-Perot resonances or guided modes via grating coupling. This approach is generalized to a complete amorphous silicon solar cell, with the additional degrees of freedom provided by the buffer layers. These results could guide the design of resonant structures for optimized ultra-thin solar cells.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(040.6040) Detectors : Silicon
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: January 22, 2013
Revised Manuscript: February 21, 2013
Manuscript Accepted: February 22, 2013
Published: April 9, 2013

Inès Massiot, Clément Colin, Christophe Sauvan, Philippe Lalanne, Pere Roca i Cabarrocas, Jean-Luc Pelouard, and Stéphane Collin, "Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires," Opt. Express 21, A372-A381 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.
  2. P. Campbell, M. A. Green, “The limiting efficiency of silicon solar cells under concentrated light,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986). [CrossRef]
  3. D. L. Staebler, C. R. Wronski, “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon,” J. Appl. Phys. 51(6), 3262–3268 (1980). [CrossRef]
  4. B. Rech, H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys. A 69, 155–167 (1999). [CrossRef]
  5. J. Krc, F. Smole, M. Topic, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003). [CrossRef]
  6. C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010). [CrossRef]
  7. K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010). [CrossRef]
  8. A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012). [CrossRef]
  9. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010). [CrossRef] [PubMed]
  10. V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  11. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010). [CrossRef]
  12. T. Söderström, F.J. Haug, V. Terrazoni-Daudrix, C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103, 114509 (2008). [CrossRef]
  13. M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009). [CrossRef]
  14. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
  15. F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009). [CrossRef]
  16. O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012). [CrossRef]
  17. M. van Lare, F. Lenzmann, M. A. Verschuuren, A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012). [CrossRef]
  18. Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013). [CrossRef]
  19. I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012). [CrossRef]
  20. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,“ Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  21. M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012). [CrossRef]
  22. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  23. P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–789 (1996). [CrossRef]
  24. A free version of the software “Reticolo” is available at http://www.lp2n.institutoptique.fr/Membres-Services/Responsables-d-equipe/LALANNE-Philippe .
  25. P. Lalanne, M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for TM polarization,” J. Mod. Opt. 45, 1357–1374 (1998). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 350–357.
  27. F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009). [CrossRef]
  28. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited