OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A750–A764

A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing

Alaric Taylor, Ivan Parkin, Nuruzzaman Noor, Clemens Tummeltshammer, Mark S Brown, and Ioannis Papakonstantinou  »View Author Affiliations

Optics Express, Vol. 21, Issue S5, pp. A750-A764 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel approach towards achieving high visible transmittance for vanadium dioxide (VO2) coated surfaces whilst maintaining the solar energy transmittance modulation required for smart-window applications. Our method deviates from conventional approaches and utilizes subwavelength surface structures, based upon those present on the eyeballs of moths, that are engineered to exhibit broadband, polarization insensitive and wide-angle antireflection properties. The moth-eye functionalised surface is expected to benefit from simultaneous super-hydrophobic properties that enable the window to self-clean. We develop a set of design rules for the moth-eye surface nanostructures and, following this, numerically optimize their dimensions using parameter search algorithms implemented through a series of Finite Difference Time Domain (FDTD) simulations. We select six high-performing cases for presentation, all of which have a periodicity of 130 nm and aspect ratios between 1.9 and 8.8. Based upon our calculations the selected cases modulate the solar energy transmittance by as much as 23.1% whilst maintaining high visible transmittance of up to 70.3%. The performance metrics of the windows presented in this paper are the highest calculated for VO2 based smart-windows.

© 2013 OSA

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(350.6050) Other areas of optics : Solar energy
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(310.5448) Thin films : Polarization, other optical properties
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design

ToC Category:

Original Manuscript: May 31, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: June 27, 2013
Published: July 10, 2013

Alaric Taylor, Ivan Parkin, Nuruzzaman Noor, Clemens Tummeltshammer, Mark S Brown, and Ioannis Papakonstantinou, "A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing," Opt. Express 21, A750-A764 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. United Nations Environment Programme, Buildings and climate change - status, challenges and opportunities (UNEP, 2007).
  2. H. Deniz, T. Khudiyev, F. Buyukserin, M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011). [CrossRef]
  3. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012). [CrossRef] [PubMed]
  4. W.-L. Min, B. Jiang, P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 3914–3918 (2008). [CrossRef]
  5. M. Tazawa, K. Yoshimura, P. Jin, G. Xu, “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Appl. Phys. A Mater. Sci. Process. 77, 455–459 (2003). [CrossRef]
  6. N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi (a) 206, 2155–2160 (2009). [CrossRef]
  7. G. Xu, P. Jin, M. Tazawa, K. Yoshimura, “Optimization of antireflection coating for VO2-based energy efficient window,” Sol. Energ. Mat. Sol. Cells 83, 29–37 (2004). [CrossRef]
  8. T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002). [CrossRef]
  9. C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD,” Chem. Vap. Deposition 13, 145–151 (2007). [CrossRef]
  10. P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973). [CrossRef]
  11. D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies.” Proc. R. Soc. B. 273, 661–7 (2006). [CrossRef] [PubMed]
  12. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” JOSA A 8, 549–553 (1991). [CrossRef]
  13. S. J. Wilson, M. C. Hutley, “The optical properties of ’moth eye’ antireflection surfaces,” Optica Acta 29, 993–1009 (1982). [CrossRef]
  14. C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517, 4565–4570 (2009). [CrossRef]
  15. R. Binions, C. Piccirillo, I. P. Parkin, “Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride,” Surface and Coatings Tech. 201, 9369–9372 (2007). [CrossRef]
  16. I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008). [CrossRef]
  17. R. Binions, G. Hyett, C. Piccirillo, I. P. Parkin, “Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties,” J. Mater. Chem. 17, 4652 (2007). [CrossRef]
  18. M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011). [CrossRef]
  19. M. Saeli, R. Binions, C. Piccirillo, I. P. Parkin, “Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide,” Applied Surface Science 255, 7291–7295 (2009). [CrossRef]
  20. Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).
  21. N. Mlyuka, G. Niklasson, C. Granqvist, “Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance,” Sol. Energ. Mat. Sol. Cells 93, 1685–1687 (2009). [CrossRef]
  22. C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energ. Mat. Sol. Cells 91, 1529–1598 (2007). [CrossRef]
  23. T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. of the Opt. Soc. 22, 73 (1931). [CrossRef]
  24. American Society for Testing and Materials, “ASTM G173-03 reference spectra,” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  25. M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010). [CrossRef]
  26. N. Ohta, A. R. Robertson, CIE standard colorimetric system in colorimetry: fundamentals and applications (John Wiley & Sons, Ltd, Chichester, UK, 2006).
  27. H. W. Verleur, J. A. S. Barker, C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 172 (1968). [CrossRef]
  28. H. Kakiuchida, P. Jin, M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energ. Mat. Sol. Cells 92, 1279–1284 (2008). [CrossRef]
  29. Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011). [CrossRef]
  30. K. Kato, P. K. Song, H. Odaka, Y. Shigesato, “Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows” Jpn. J. Appl. Phys. 42, 6523–6531 (2003). [CrossRef]
  31. P. Jin, G. Xu, M. Tazawa, K. Yoshimura, “A VO2-based multifunctional window with highly improved luminous transmittance,” Jpn. J. Appl. Phys. 41, L278–L280 (2002). [CrossRef]
  32. W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999). [CrossRef]
  33. S.-Y. Li, G. Niklasson, C. Granqvist, “Thermochromic fenestration with VO2-based materials: three challenges and how they can be met,” Thin Solid Films 520, 3823–3828 (2012). [CrossRef]
  34. N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature,” Appl. Phys. Lett. 95, 171909 (2009). [CrossRef]
  35. I. Takahash, M. Hibino, T. Kudo, “Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti,” Jpn. J. Appl. Phys. 40, 1391–1395 (2001). [CrossRef]
  36. C. Aydin, A. Zaslavsky, G. J. Sonek, J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80, 2242 (2002). [CrossRef]
  37. J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009). [CrossRef]
  38. L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010). [CrossRef]
  39. O. Deparis, N. Khuzayim, A. Parker, J. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E 79, 1–7 (2009). [CrossRef]
  40. C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008). [CrossRef]
  41. E. a. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926 (2003). [CrossRef]
  42. B. Viswanath, Changhyun Ko, Z. Yang, S. Ramanathan, “Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon,” Appl. Phys. 109, 063512 (2011).
  43. J. Narayan, V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” Appl. Phys. 100, 103524 (2006).
  44. C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and characterisation of W-doped VO2 by aerosol assisted chemical vapour deposition,” Thin Solid Films 516, 1992–1997 (2008). [CrossRef]
  45. M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010). [CrossRef]
  46. T. D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, “APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2 : SnO2,” J. Mater. Chem. 15, 4560 (2005). [CrossRef]
  47. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited