OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A847–A863

Morphology-dependent light trapping in thin-film organic solar cells

Richard R. Grote, Steven J. Brown, Jeffrey B. Driscoll, Richard M. Osgood, Jr., and Jon A. Schuller  »View Author Affiliations


Optics Express, Vol. 21, Issue S5, pp. A847-A863 (2013)
http://dx.doi.org/10.1364/OE.21.00A847


View Full Text Article

Enhanced HTML    Acrobat PDF (6697 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The active layer materials used in organic photovoltaic (OPV) cells often self-assemble into highly ordered morphologies, resulting in significant optical anisotropies. However, the impact of these anisotropies on light trapping in nanophotonic OPV architectures has not been considered. In this paper, we show that optical anisotropies in a canonical OPV material, P3HT, strongly affect absorption enhancements in ultra-thin textured OPV cells. In particular we show that plasmonic and gap-mode solar cell architectures redistribute electromagnetic energy into the out-of-plane field component, independent of the active layer orientation. Using analytical and numerical calculations, we demonstrate how the absorption in these solar cell designs can be significantly increased by reorienting polymer domains such that strongly absorbing axes align with the direction of maximum field enhancement.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4890) Materials : Organic materials
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: June 18, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: July 27, 2013
Published: August 15, 2013

Citation
Richard R. Grote, Steven J. Brown, Jeffrey B. Driscoll, Richard M. Osgood, and Jon A. Schuller, "Morphology-dependent light trapping in thin-film organic solar cells," Opt. Express 21, A847-A863 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S5-A847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today10, 28–33 (2007). [CrossRef]
  2. P. Peumans, V. Bulović, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett.76, 2650–2652 (2000). [CrossRef]
  3. B. O’Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, “Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings,” Appl. Phys. Lett.89, 233502 (2006). [CrossRef]
  4. F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett.95, 013305 (2009). [CrossRef]
  5. D. M. O’Carroll, C. E. Hofmann, and H. A. Atwater, “Conjugated polymer/metal nanowire heterostructure plasmonic antennas,” Adv. Mater.22, 1223–1227 (2010). [CrossRef]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater.9, 205–213 (2010). [CrossRef]
  7. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010). [CrossRef] [PubMed]
  8. D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21, 16293–16303 (2011). [CrossRef]
  9. K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater.23, 112–116 (2011). [CrossRef]
  10. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12, 214–218 (2012). [CrossRef]
  11. D. M. O’Carroll, J. S. Fakonas, D. M. Callahan, M. Schierhorn, and H. A. Atwater, “Metal-polymer-metal split-dipole nanoantennas,” Adv. Mater.24, OP136–OP142 (2012). [CrossRef]
  12. T. Z. Oo, N. Mathews, G. Xing, B. Wu, B. Xing, L. H. Wong, T. C. Sum, and S. G. Mhaisalkar, “Ultrafine gold nanowire networks as plasmonic antennae in organic photovoltaics,” J. Phys. Chem. C116, 6453–6458 (2012). [CrossRef]
  13. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett.109, 173901 (2012). [CrossRef] [PubMed]
  14. J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett.100, 121121 (2012). [CrossRef]
  15. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express19, 25729–25740 (2011). [CrossRef]
  16. N. C. Panoiu and R. M. Osgood, “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett.32, 2825–2827 (2007). [CrossRef] [PubMed]
  17. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt: Res. Appl.19, 473–477 (2011). [CrossRef]
  18. S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bulletin36, 453–460 (2011). [CrossRef]
  19. E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys.110, 104501 (2011). [CrossRef]
  20. X. Sheng, J. Hu, J. Michel, and L. C. Kimerling, “Light trapping limits in plasmonic solar cells: an analytical investigation,” Opt. Express20, A496–A501 (2012). [CrossRef] [PubMed]
  21. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nature Photon.6, 130–132 (2012). [CrossRef]
  22. M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. copper phthalocyanine,” J. Vac. Sci. Technol., A10, 2816–2821 (1992). [CrossRef]
  23. O. D. Gordan, M. Friedrich, and D. R. T. Zahn, “The anisotropic dielectric function for copper phthalocyanine thin films,” Org. Electron.5, 291–297 (2004). [CrossRef]
  24. M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express16, 19770–19778 (2008). [CrossRef] [PubMed]
  25. J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotech.8, 271–276 (2013). [CrossRef]
  26. M. Campoy-Quiles, P. G. Etchegoin, and D. D. C. Bradley, “On the optical anisotropy of conjugated polymer thin films,” Phys. Rev. B72, 045209 (2005). [CrossRef]
  27. D. M. DeLongchamp, R. J. Kline, E. K. Lin, D. A. Fischer, L. J. Richter, L. A. Lucas, M. Heeney, I. McCulloch, and J. E. Northrup, “High carrier mobility polythiophene thin films: structure determination by experiment and theory,” Adv. Mater.19, 833–837 (2007). [CrossRef]
  28. M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring molecular order in poly(3-alkylthiophene) thin films with polarizing spectroscopies,” Langmuir23, 834–842 (2007). [CrossRef] [PubMed]
  29. U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch, and N. S. Sariciftci, “Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties,” Thin Solid Films496, 679–682 (2006). [CrossRef]
  30. S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, W.-F. Su, W.-M. Jen, and C.-W. Chen, “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells,” J. Mater. Chem.19, 5554–5560 (2009). [CrossRef]
  31. D. S. Germack, C. K. Chan, R. J. Kline, D. A. Fischer, D. J. Gundlach, M. F. Toney, L. J. Richter, and D. M. De-Longchamp, “Interfacial segregation in polymer/fullerene blend films for photovoltaic devices,” Macromolecules43, 3828–3836 (2010). [CrossRef]
  32. M. R. Hammond, R. J. Kline, A. A. Herzing, L. J. Richter, D. S. Germack, H.-W. Ro, C. L. Soles, D. A. Fischer, T. Xu, L. Yu, M. F. Toney, and D. M. DeLongchamp, “Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells,” ACS Nano5, 8248–8257 (2011). [CrossRef] [PubMed]
  33. J. Liu, Y. Sun, X. Gao, R. Xing, L. Zheng, S. Wu, Y. Geng, and Y. Han, “Oriented poly(3-hexylthiophene) nanofibril with the π- π stacking growth direction by solvent directional evaporation,” Langmuir27, 4212–4219 (2011). [CrossRef] [PubMed]
  34. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature401, 685–688 (1999). [CrossRef]
  35. D. E. Johnston, K. G. Yager, C.-Y. Nam, B. M. Ocko, and C. T. Black, “One-volt operation of high-current vertical channel polymer semiconductor field-effect transistors,” Nano Lett.12, 4181–4186 (2012). [CrossRef] [PubMed]
  36. J. Jo, S.-I. Na, S.-S. Kim, T.-W. Lee, Y. Chung, S.-J. Kang, D. Vak, and D.-Y. Kim, “Three-dimensional bulk heterojunction morphology for achieving high internal quantum efficiency in polymer solar cells,” Adv. Funct. Mater.19, 2398–2406 (2009). [CrossRef]
  37. G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9, 4037–4041 (2009). [CrossRef] [PubMed]
  38. Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett.93, 221109 (2008). [CrossRef]
  39. M. Liscidini and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B81, 115335 (2010). [CrossRef]
  40. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A14, 3001–3008 (1997). [CrossRef]
  41. ASTM G173-03, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  42. C. Chen, P. Berini, D. Feng, S. Tanev, and V. P. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express7, 260–272 (2000). [CrossRef] [PubMed]
  43. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72, 899–907 (1982). [CrossRef]
  44. RSoft Design Group, Inc., http://www.rsoftdesign.com/ .
  45. T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103 (2012). [CrossRef]
  46. P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B67, 064203 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited