OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A1035–A1051

Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic  »View Author Affiliations

Optics Express, Vol. 21, Issue S6, pp. A1035-A1051 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2970 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the keys towards high efficiency thermophotovoltaic (TPV) energy conversion systems lies in spectral control. Here, we present detailed performance predictions of realistic TPV systems incorporating experimentally demonstrated advanced spectral control components. Compared to the blackbody emitter, the optimized two-dimensional (2D) tantalum (Ta) photonic crystal (PhC) selective emitter enables up to 100% improvement in system efficiency. When combined with the well characterized cold side tandem filter and the latest InGaAs TPV cells, a TPV energy conversion system with radiant heat-to-electricity efficiency of 25% and power density of 0.68 W cm−2 is achievable today even at a relatively low temperature of 1320 K. The efficiency could be increased to ∼ 40% (the theoretical 0.62 eV single bandgap TPV thermodynamic limit at 1320 K is 55%) as future implementation of more optimized TPV cells approach their theoretical thermodynamic limit.

© 2013 OSA

OCIS Codes
(260.2160) Physical optics : Energy transfer
(050.5298) Diffraction and gratings : Photonic crystals
(290.6815) Scattering : Thermal emission

ToC Category:

Original Manuscript: August 6, 2013
Revised Manuscript: September 30, 2013
Manuscript Accepted: October 1, 2013
Published: October 17, 2013

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic, "Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems," Opt. Express 21, A1035-A1051 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. Depoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett.75, 1305–1307 (1999). [CrossRef]
  2. O. V. Sulima and A. W. Bett, “Fabrication and simulation of GaSb thermophotovoltaic cells,” Sol. Ener. Mater. Sol. Cells66, 533–540 (2001). [CrossRef]
  3. R. R. Siergiej, B. Wernsman, S. A. Derry, R. G. Mahorter, R. J. Wehrer, S. D. Link, M. N. Palmisiano, R. L. Messham, S. Murray, C. S. Murray, F. Newman, J. Hills, and D. Taylor, “20% efficient InGaAs/InPAs TPV cells,” in AIP Conference Proceedings: Thermophotovoltaic Generation of Electricity 5th Conference (AIP, 2003), pp. 414–423. [CrossRef]
  4. M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev.53, 2879–2891 (2006). [CrossRef]
  5. H. H. Kolm, “Solar-battery Power Source,” Tech. Rep., MIT Lincoln Laboratory. Quarterly Progress Report, Group35, pp. 13 (1956).
  6. B. D. Wedlockt, “Thermo-photo-voltaic energy conversion,” Proc. IEEE51, 694–698 (1963). [CrossRef]
  7. T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sust. Energ. Rev.3, 77–184 (1999). [CrossRef]
  8. M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev.48, 367–376 (2001). [CrossRef]
  9. B. Wernsman, R. G. Mahorter, R. R. Siergiej, S. D. Link, R. J. Wehrer, S. J. Belanger, P. M. Fourspring, S. Murray, F. Newman, D. Taylor, and T. Rahmlow, “Advanced thermophotovoltaic devices for space nuclear power systems,” in AIP Conference Proceedings: Space Technology and Applications International Forum (AIP, 2005), pp. 1441–1448. [CrossRef]
  10. R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).
  11. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol.18, S151–S157 (2003). [CrossRef]
  12. V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng.129, 298–303 (2007). [CrossRef]
  13. C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in AIP Conference Proceedings: Thermophotovoltaic Generation of Electricity 6th Conference (AIP, 2004), pp. 123–132.
  14. R. A. Lowe, D. L. Chubb, S. C. Farmer, and B. S. Good, “Rare-earth garnet selective emitter,” Appl. Phys. Lett.64, 3551–3553 (1994). [CrossRef]
  15. H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter,” in Conference Record of the Twenty Eigth IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 1214–1217. [CrossRef]
  16. L. Ferguson and F. Dogan, “A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion,” Mat. Sci. Eng. B83, 35–41 (2001). [CrossRef]
  17. B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Ener. Mater. Sol. Cells73, 221–234 (2002). [CrossRef]
  18. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B70, 125101 (2004). [CrossRef]
  19. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E74, 016609 (2006). [CrossRef]
  20. A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).
  21. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett.81, 4685–4687 (2002). [CrossRef]
  22. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85, 3399–3401 (2004). [CrossRef]
  23. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express14, 8785–8796 (2006). [CrossRef] [PubMed]
  24. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92, 193101 (2008). [CrossRef]
  25. R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett.93, 063307 (2008). [CrossRef]
  26. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83, 380–382 (2003). [CrossRef]
  27. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs,” Phys. Rev. E74, 036615 (2006). [CrossRef]
  28. T. D. Rahmlow, J. E. Lazo-wasem, E. J. Gratrix, P. M. Fourspring, and D. M. Depoy, “New performance levels for TPV front surface filters,” in AIP Conference Proceedings: Thermophotovoltaic Generation of Electricity 6th Conference (AIP, 2004), pp. 180–188.
  29. R. T. Kristensen, J. F. Beausang, and D. M. Depoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys.95, 4845–4851 (2004). [CrossRef]
  30. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2photonic crystals for thermophotovoltaic applications,” J. Appl. Phys.97, 033529 (2005). [CrossRef]
  31. T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in AIP Conference Proceedings: Thermophotovoltaic Generation of Electricity 7th Conference (AIP, 2007), pp. 59–67.
  32. G. W. Charache, D. M. DePoy, P. F. Baldasaro, and B. C. Campbell, “Thermophotovoltaic devices utilizing a back surface reflector for spectral control,” AIP Conf. Proc.358, 339–350 (1996). [CrossRef]
  33. R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc.738, 329–336 (2004). [CrossRef]
  34. L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc.890, 182–189 (2007). [CrossRef]
  35. P. F. Baldasaro, J. E. Raynolds, G. W. Charache, D. M. Depoy, C. T. Ballinger, T. Donovan, and J. M. Borrego, “Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs,” J. Appl. Phys.89, 3319–3327 (2001). [CrossRef]
  36. T. A. Walsh and S. Y. Lin, “Power density and efficiency of thermophotovoltaic energy conversion using a photonic-crystal emitter and a 2-D metal-grid filter,” IEEE Trans. Electron. Dev.55, 1101–1108 (2008). [CrossRef]
  37. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express18, A314–A334 (2010). [CrossRef] [PubMed]
  38. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A83, 033810 (2011). [CrossRef]
  39. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA109, 2280 (2011). [CrossRef]
  40. M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29, 061402 (2011). [CrossRef]
  41. V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31, 011802 (2013). [CrossRef]
  42. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express21, 11482–11491 (2013). [CrossRef] [PubMed]
  43. B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev.51, 512–515 (2004). [CrossRef]
  44. C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” in AIP Conference Proceedings: Space Technology and Applications International Forum (AIP, 2005), pp. 601–614. [CrossRef]
  45. W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Ener. Mater. Sol. Cells94, 509–514 (2010). [CrossRef]
  46. E. R. G. Eckert and E. M. Sparrow, “Radiative heat exchange between surfaces with specular reflection,” Int. J. Heat Mass Trans.3, 42–54 (1961). [CrossRef]
  47. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003). [CrossRef]
  48. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  49. J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93, 227401 (2004). [CrossRef] [PubMed]
  50. Y. S. Touloukian and D. P. DeWitt, “Thermal Radiative Properties: Metallic Elements and Alloys,” in Thermo-physical Properties of Matter Volume 7(IFI/PLENUM, 1970).
  51. NREL, “Best Research-Cell Efficiencies Chart,” http://www.nrel.gov/ncpv/images/efficiency_chart.jpg .
  52. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51, 4494–4500 (1980). [CrossRef]
  53. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32, 510–519 (1961). [CrossRef]
  54. L. M. Fraas and L. Minkin, “TPV history from 1990 to present & future trends,” AIP Conf. Proc.890, 17–23 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited