OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A1065–A1077

Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells

Yun Da and Yimin Xuan  »View Author Affiliations


Optics Express, Vol. 21, Issue S6, pp. A1065-A1077 (2013)
http://dx.doi.org/10.1364/OE.21.0A1065


View Full Text Article

Enhanced HTML    Acrobat PDF (2476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanostructured light trapping is a promising way to improve the efficiency in thin-film solar cells recently. In this work, both the optical and electrical properties of thin-film solar cells with 1D periodic grating structure are investigated by using photoelectric coupling model. It is found that surface recombination plays a key role in determining the performance of nanostructured thin-film solar cells. Once the recombination effect is considered, the higher optical absorption does not mean the higher conversion efficiency as most existing publications claimed. Both the surface recombination velocity and geometric parameters of structure have great impact on the efficiency of thin-film solar cells. Our simulation results indicate that nanostructured light trapping will not only improve optical absorption but also boost the surface recombination simultaneously. Therefore, we must get the tradeoffs between optical absorption and surface recombination to obtain the maximum conversion efficiency. Our work makes it clear that both the optical absorption and electrical recombination response should be taken into account simultaneously in designing the nanostructured thin-film solar cells.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(040.6040) Detectors : Silicon
(050.0050) Diffraction and gratings : Diffraction and gratings
(290.1990) Scattering : Diffusion
(310.0310) Thin films : Thin films

ToC Category:
Photovoltaics

History
Original Manuscript: September 6, 2013
Revised Manuscript: October 15, 2013
Manuscript Accepted: October 17, 2013
Published: October 25, 2013

Citation
Yun Da and Yimin Xuan, "Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells," Opt. Express 21, A1065-A1077 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S6-A1065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Humakawa, “Thin-Film Solar Cells, Next Generation Photovoltaics and Its Applications. (Springer, 2004).
  2. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-Si solar cell structures with graded refractive index structure,” Opt. Express19(S2Suppl 2), A108–A117 (2011). [CrossRef] [PubMed]
  3. L. Yang, Y. Xuan, and J. Tan, “Efficient optical absorption in thin-film solar cells,” Opt. Express19(S5Suppl 5), A1165–A1174 (2011). [CrossRef] [PubMed]
  4. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express17(12), 10195–10205 (2009). [CrossRef] [PubMed]
  5. Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics6(1), 155–161 (2011). [CrossRef]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  7. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancement,” Adv. Mater.21(34), 3504–3509 (2009). [CrossRef]
  8. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  9. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett.98(9), 093117 (2011). [CrossRef]
  10. J. Buencuerpo, L. E. Munioz-Camuniez, M. L. Dotor, and P. A. Postigo, “Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications,” Opt. Express20(S4Suppl 4), A452–A464 (2012). [CrossRef] [PubMed]
  11. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express17(16), 14312–14321 (2009). [CrossRef] [PubMed]
  12. W. Wu and R. Magnusson, “Total absorption of TM polarized light in a 100 nm spectral band in a nanopatterned thin a-Si film,” Opt. Lett.37(11), 2103–2105 (2012). [CrossRef] [PubMed]
  13. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B. 86(4), 041404 (2012).
  14. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012). [CrossRef] [PubMed]
  15. X. Li, N. P. Hylton, V. Giannini, K. Lee, N. J. Ekinsdaukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modeling of plasmonic solar cells,” Opt. Express19(S4), A888–A896 (2011).
  16. A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys.113(22), 224501 (2013). [CrossRef]
  17. S. Yu, F. Roemer, and B. Witzigmann, “Analysis of surface recombination in nanowire array solar cells,” J. Photon. Energy2(1), 028002 (2012). [CrossRef]
  18. G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt.14(2), 024011 (2012). [CrossRef]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2005).
  20. AM1, 5 solar spectrum irradiance data: http://rredc.nrel.gov/solar/spectra/am1.5 .
  21. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, 1984).
  22. J. Nelson, The Physics of Solar Cells (Imperial College, 2003).
  23. W. E. I. Sha, W. C. H. Choy, Y. Wu, and W. C. Chew, “Optical and electrical study of organic solar cells with a 2D grating anode,” Opt. Express20(3), 2572–2580 (2012). [CrossRef] [PubMed]
  24. S. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  26. L. G. Jeffery, Handbook of Photovoltaic Science and Engineering (Antonio Luque, 2004).
  27. T. Markvart and L. Castaner, Practical Handbook of Photovoltaics: Fundamentals and Applications (Elsevier Advanced Technology, 2003).
  28. F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011). [CrossRef]
  29. O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, and N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett.10(7), 2323–2329 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited