OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A977–A990

An image processing approach to approximating interface textures of microcrystalline silicon layers grown on existing aluminum-doped zinc oxide textures

Kai Hertel, Jürgen Hüpkes, and Christoph Pflaum  »View Author Affiliations


Optics Express, Vol. 21, Issue S6, pp. A977-A990 (2013)
http://dx.doi.org/10.1364/OE.21.00A977


View Full Text Article

Enhanced HTML    Acrobat PDF (6331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an algorithm for generating a surface approximation of microcrystalline silicon (μc-Si) layers after plasma enhanced chemical vapor deposition (PECVD) onto surface textured substrates, where data of the textured substrate surface are available as input. We utilize mathematical image processing tools and combine them with an ellipsoid generator approach. The presented algorithm has been tuned for use in thin-film silicon solar cell applications, where textured surfaces are used to improve light trapping. We demonstrate the feasibility of this method by means of optical simulations of generated surface textures, comparing them to simulations of measured atomic force microscopy (AFM) scan data of both Aluminum-doped zinc oxide (AZO, a transparent and conductive material) and μc-Si layers.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(160.6000) Materials : Semiconductor materials
(240.5770) Optics at surfaces : Roughness
(350.6050) Other areas of optics : Solar energy

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: July 9, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: October 3, 2013
Published: October 9, 2013

Citation
Kai Hertel, Jürgen Hüpkes, and Christoph Pflaum, "An image processing approach to approximating interface textures of microcrystalline silicon layers grown on existing aluminum-doped zinc oxide textures," Opt. Express 21, A977-A990 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S6-A977


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ermes, K. Bittkau, and R. Carius, “Influence of growth induced non-conformality on absorptance in silicon-based thin-film solar cells investigated by rigorous optical simulations,” Appl. Phys. Lett., to be submitted.
  2. S. J. Linz, M. Raible, and P. Hänggi, “Amorphous thin film growth: modeling and pattern formation,” Adv. Solid State Phys.41, 391–403 (2001). [CrossRef]
  3. M. Raible, S. G. Mayr, S. J. Linz, M. Moske, P. Hänggi, and K. Samwer, “Amorphous thin-film growth: theory compared with experiment,” Europhys. Lett.50(1), 61–67 (2000). [CrossRef]
  4. V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells112, 182–189 (2013). [CrossRef]
  5. V. Jovanov, U. Palanchoke, P. Magnus, H. Stiebig, J. Hüpkes, P. Sichanugrist, M. Konagai, S. Wiesendanger, C. Rockstuhl, and D. Knipp, “Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies,” Opt. Express21, A595–A606 (2013). [CrossRef]
  6. M. Sever, B. Lipovsek, J. Krc, and M. Topic, “Optimisation of surface textures in thin-film silicon solar cells with 3d optical modelling by considering realistic layer growth,” in Proceedings of the 27th European PV Solar Energy Conference and Exhibition (Frankfurt, Germany, 2012), pp. 2129–2131.
  7. V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces5(15), 7109–7116 (2013). [CrossRef] [PubMed]
  8. R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell.9(4), 532–550 (1987). [CrossRef] [PubMed]
  9. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell.12(7), 629–639 (1990). [CrossRef]
  10. A. Lanitis, C. J. Taylor, and T. F. Cootes, “Modeling the process of ageing in face images,” in Proceedings of the Seventh IEEE International Conference on Computer Vision (Kerkyra, Greece, 1999) 1, pp. 131–136. [CrossRef]
  11. R. Malladi and J. A. Sethian, “Image processing: flows under min/max curvature and mean curvature,” Graph. Model. Image Process.58(2), 127–141 (1996). [CrossRef]
  12. C. Pflaum and Z. Rahimi, “An iterative solver for the finite-difference frequency-domain (FDFD) method for the simulation of materials with negative permittivity,” Numer. Linear Algebra Appl.18(4), 653–670 (2011). [CrossRef]
  13. S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. Brabec, “Numerical simulation of light propagation in silver nanowire films using time-harmonic inverse iteration method,” Appl. Phys.113(15), 154303 (2013).
  14. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” Appl. Phys.108(4), 044505 (2010).
  15. V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, and D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells110, 49–57 (2013). [CrossRef]
  16. J. Springer, A. Poruba, J. Müller, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” Appl. Phys.95(3), 1427–1429 (2004).
  17. U. Pätzold, E. Moulin, B. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express19, A1219–A1230 (2011). [CrossRef]
  18. R. Franken, R. Stolk, H. Li, C. van der Werf, J. Rath, and R. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” Appl. Phys.102(1), 014503 (2007).
  19. C. Jandl, W. Dewald, U. W. Paetzold, A. Gordijn, C. Pflaum, and H. Stiebig, “Simulation of tandem thin-film silicon solar cells,” in Photonics for Solar Energy Systems III, R. B. Wehrspohn and A. Gombert, eds., Proc. SPIE7725, 772516 (2010). [CrossRef]
  20. C. Jandl, W. Dewald, C. Pflaum, and H. Stiebig, “Simulation of microcrystalline thin-film silicon solar cells with integrated AFM scans,” in Proceedings of the 25th European PV Solar Energy Conference and Exhibition (Valencia, Spain, 2010), pp. 3154–3157
  21. C. Jandl, K. Hertel, C. Pflaum, and H. Stiebig, “Simulation of silicon thin-film solar cells for oblique incident waves,” in Eco-Photonics 2011: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future, P. Ambs, D. Curticapean, C. Emmelmann, W. Knapp, Z. T. Kuznicki, and P. P. Meyrueis, eds., Proc. SPIE8065, pp. 806505 (2011). [CrossRef]
  22. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114–131114 (2011). [CrossRef]
  23. Y. Li, B. Qian, C. Li, J. Xu, and C. Jiang, “Optical properties of nanocrystal-silicon thin films on silicon nanopillar arrays after thermal annealing,” Appl. Surf. Sci.265, 324–328 (2013). [CrossRef]
  24. P. I. Widenborg and A. G. Aberle, “Polycrystalline silicon thin-film solar cells on AIT-textured glass super-strates,” Adv. OptoElectron.2007,24584-1–24584-7 (2007). [CrossRef]
  25. H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” Appl. Phys.105(9), 094511 (2009).
  26. F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hüpkes, D. Hrunski, and B. Rech, “Improved electrical transport in Al-doped zinc oxide by thermal treatment,” Appl. Phys.107(1), 013708 (2010).
  27. X. Xu, “Nanotexturierte Grenzflächen in Silizium-Dünnschichtsolarzellen,” unpublished master’s thesis, Forschungszentrum Jülich, Germany (2011).
  28. T. H. Colding and W. P. Minicozzi, “A Course in Minimal Surfaces” in Graduate Studies in Mathematics (American Mathematical Society, 2011), Vol. 121.
  29. M. Mondelli and A. Ciomaga, “Finite difference schemes for MCM and AMSS,” Image processing on line 2011, http://dx.doi.org/10.5201/ipol.2011.cm_fds .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited