OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A99–A110

Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states

Peng Wang and Rajesh Menon  »View Author Affiliations


Optics Express, Vol. 22, Issue S1, pp. A99-A110 (2014)
http://dx.doi.org/10.1364/OE.22.000A99


View Full Text Article

Enhanced HTML    Acrobat PDF (2087 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent work has shown that using a high-index cladding atop a lower-index photovoltaic absorber enables absorption of light beyond the ergodic (4n2) limit. In this paper, we propose a generalized optimization method for deriving optimal geometries that allow for such enhancement. Specifically, we adapted the direct-binary-search algorithm to optimize a complex 2-D multi-layer structure with the explicit goal of increasing photocurrent. We show that such an optimization results in enhancing the local density of optical states in an ultra-thin absorber, which forms a slot-waveguide geometry in the presence of a higher-index overcladding. Numerical simulations confirmed optical absorption approaching 100% and absorption-enhancement beyond the ergodic (4n2) limit for specific spectral bands of interest. Our method provides a direct, intuitive and computationally scalable approach for designing light-trapping nanostructures.

© 2013 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6188) Thin films : Spectral properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: July 8, 2013
Revised Manuscript: November 12, 2013
Manuscript Accepted: December 6, 2013
Published: December 12, 2013

Citation
Peng Wang and Rajesh Menon, "Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states," Opt. Express 22, A99-A110 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S1-A99


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004). [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett.11(2), 661–665 (2011). [CrossRef] [PubMed]
  4. A. Goetzberger, C. Hebling, and H. Schock, “Photovoltaic materials, history, status and outlook,” Mater. Sci. Eng. Rep.40(1), 1–46 (2003). [CrossRef]
  5. News reports on updated world records of thin-film photovoltaics efficiencies, http://www.pv-tech.org/ .
  6. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  7. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  8. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 517–523 (2011). [CrossRef] [PubMed]
  9. P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express20(2), 1849–1855 (2012). [CrossRef] [PubMed]
  10. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  11. E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys.110(10), 104501 (2011). [CrossRef]
  12. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A14(11), 3001–3008 (1997). [CrossRef]
  13. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  14. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011). [CrossRef]
  15. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012). [CrossRef] [PubMed]
  16. J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett.100(12), 121121 (2012). [CrossRef]
  17. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009). [CrossRef]
  18. M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun.3, 770–776 (2012). [CrossRef] [PubMed]
  19. A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun.181, 687–702 (2010).
  20. American Society for Testing and Materials (ASTM), Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  21. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi205(12), 2777–2795 (2008). [CrossRef]
  22. J. Nelson, The Physics of Solar Cells (Imperial College, 2004).
  23. G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express20(3), 2814–2823 (2012). [CrossRef] [PubMed]
  24. G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett.110(12), 123901 (2013). [CrossRef]
  25. P. Wang and R. Menon, “Three-dimensional lithography via digital holography,” in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTu3A.4.
  26. P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express21(5), 6274–6285 (2013). [CrossRef] [PubMed]
  27. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009). [CrossRef] [PubMed]
  28. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007). [CrossRef]
  29. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express21(S1), A60–A76 (2013). [CrossRef] [PubMed]
  30. J. R. Nagel, S. Blair, and M. A. Scarpulla, “Exact field solution to guided wave propagation in lossy thin films,” Opt. Express19(21), 20159–20171 (2011). [CrossRef] [PubMed]
  31. P. Wang and R. Menon, “Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics,” Opt. Express20(S4), A545–A553 (2012). [CrossRef] [PubMed]
  32. W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films518(24), 7450–7454 (2010). [CrossRef]
  33. Website of refractive index database, http://refractiveindex.info/ .
  34. S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express21(1), 1209–1217 (2013). [CrossRef] [PubMed]
  35. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012). [CrossRef] [PubMed]
  36. E. E. Moon, S. A. Chandorkar, S. V. Sreenivasan, and R. F. Pease, “Thermally controlled alignment for wafer-scale lithography,” J. Micro/Nanolith. MEMS MOEMS12(3), 031109 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited