OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S5 — Aug. 25, 2014
  • pp: A1229–A1236

Light trapping efficiency of organic solar cells with large period photonic crystals

Léo Peres, Valérie Vigneras, and Sophie Fasquel  »View Author Affiliations


Optics Express, Vol. 22, Issue S5, pp. A1229-A1236 (2014)
http://dx.doi.org/10.1364/OE.22.0A1229


View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the optical properties of a 2D Photonic Crystal (PC) inserted in the upper ITO electrode of a classical P3HT:PCBM solar architecture with an ultra-thin active layer. First, we analyze the optical response of the system when only the active layer is supposed to absorb light. This allows us to observe clear photonic crystal resonances in the absorption spectrum, which increase the cell efficiency even if the period of the PC is higher than the wavelength. This is in apparent contradiction with the common belief that PC should work in subwavelength regime. Then, by turning to a real system (with optical losses in all the layers), an optimized PC design is proposed, where the maximum of efficiency is obtained for a PC period of 1200 nm, much larger than visible wavelength.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: March 20, 2014
Revised Manuscript: May 16, 2014
Manuscript Accepted: May 16, 2014
Published: July 10, 2014

Citation
Léo Peres, Valérie Vigneras, and Sophie Fasquel, "Light trapping efficiency of organic solar cells with large period photonic crystals," Opt. Express 22, A1229-A1236 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S5-A1229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Wu, X. Wu, C. Guan, K. Fai Tai, E. K. L. Yeow, H. Jin Fan, N. Mathews, and T. C. Sum, “Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cell,” Nat. Commun.4, 1–7 (2013). [CrossRef]
  2. S. Pillai and M. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010). [CrossRef]
  3. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express18(S4), A620–A630 (2010). [CrossRef] [PubMed]
  4. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett.11(2), 438–445 (2011). [CrossRef] [PubMed]
  5. K. R. Catchpole and M. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105 (2007). [CrossRef]
  6. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008). [CrossRef] [PubMed]
  7. B. Curtin, R. Biswas, and V. Dalal, “Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Appl. Phys. Lett.95(23), 231102 (2009). [CrossRef]
  8. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008). [CrossRef]
  9. D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett.92(19), 193310 (2008). [CrossRef]
  10. X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells95, S32–S38 (2011). [CrossRef]
  11. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett.100(18), 181110 (2012). [CrossRef]
  12. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012). [PubMed]
  13. D. M. Callahan, K. A. Horowitz, and H. A. Atwater, “Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers,” Opt. Express21(25), 30315–30326 (2013). [CrossRef] [PubMed]
  14. L. Peres, V. Vigneras, and S. Fasquel, “Frequential and temporal analysis of two-dimensional photonic crystals for absorption enhancement in organic solar cells,” Sol. Energy Mater. Sol. Cells117, 239–245 (2013). [CrossRef]
  15. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19(20), 19015–19026 (2011). [CrossRef] [PubMed]
  16. C. H. Tsai and P. C.-P. Paul, “Optimal design of ITO/organic photonic crystals in polymer light-emitting diodes with sidewall reflectors for high efficiency,” Microsyst. Technol.18(9-10), 1289–1296 (2012).
  17. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J.-J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells93(8), 1377–1382 (2009). [CrossRef]
  18. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express17(9), 7670–7681 (2009). [CrossRef] [PubMed]
  19. Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1–2), 95–101 (2006). [CrossRef]
  20. A. Ng, C. H. Li, M. K. Fung, A. B. Djuris, W. K. Chan, K. Y. Cheung, and W. Wong, “Accurate determination of the index of refraction of polymer blend films by spectroscopic ellipsometry,” J. Phys. Chem. C114, 15094–15101 (2010).
  21. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  22. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt.34(22), 4755–4767 (1995). [CrossRef] [PubMed]
  23. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett.81(7), 1163–1165 (2002). [CrossRef]
  24. R. Peretti, G. Gomard, C. Seassal, X. Letrartre, and E. Drouard, “Modal approach for tailoring the absorption in a photonic crystal membrane,” J. Appl. Phys.111(12), 1231141 (2012). [CrossRef]
  25. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express17(16), 14312–14321 (2009). [CrossRef] [PubMed]
  26. C. Deleuze, C. Derail, M. H. Delville, and L. Billon, “Hierarchically structured hybrid honeycomb films via micro to nanosized building blocks,” Soft Matter8(33), 8559–8562 (2012). [CrossRef]
  27. G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108(12), 123102 (2010). [CrossRef]
  28. D. M. Callahan, K. A. W. Horowitz, and H. A. Atwater, “Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers,” Opt. Express21(25), 30315–30326 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited