OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S6 — Oct. 20, 2014
  • pp: A1422–A1430

Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells

Bennett W. Schneider, Niraj N. Lal, Simeon Baker-Finch, and Thomas P. White  »View Author Affiliations

Optics Express, Vol. 22, Issue S6, pp. A1422-A1430 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Perovskite-on-silicon tandem solar cells show potential to reach > 30% conversion efficiency, but require careful optical control. We introduce here an effective light-management scheme based on the established pyramidal texturing of crystalline silicon cells. Calculations show that conformal deposition of a thin film perovskite solar cell directly onto the textured front surface of a high efficiency silicon cell can yield front surface reflection losses as low as 0.52mA/cm2. Combining this with a wavelength-selective intermediate reflector between the cells additionally provides effective light-trapping in the high-bandgap top cell, resulting in calculated absolute efficiency gains of 2 – 4%. This approach provides a practical and effective method to adapt existing high efficiency silicon cell designs for use in tandem cells, with conversion efficiencies approaching 35%.

© 2014 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy
(310.4165) Thin films : Multilayer design

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: July 11, 2014
Revised Manuscript: August 4, 2014
Manuscript Accepted: August 17, 2014
Published: August 28, 2014

Bennett W. Schneider, Niraj N. Lal, Simeon Baker-Finch, and Thomas P. White, "Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells," Opt. Express 22, A1422-A1430 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” presented at the 40th IEEE Photovoltaics Specialist Conference (PVSC), Denver, USA, 8–13 June 2014.
  2. M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovoltaics: Res. Appl. 9(2), 123–135 (2001). [CrossRef]
  3. H. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells,” J. Phys. Chem. Lett. 4, 3623–3630 (2013). [CrossRef]
  4. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013). [CrossRef] [PubMed]
  5. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–399 (2013). [CrossRef] [PubMed]
  6. T. P. White, N. N. Lal, and K. R. Catchpole, Tandem solar cells based on high-Efficiency c-Si bottom cells: top cell requirements for > 30% efficiency, IEEE J. Photovoltaics 4(1), 208–214 (2014). [CrossRef]
  7. N. N. Lal, T. P. White, and K. R. Catchpole, “Optics and light-trapping for tandem solar cells on silicon,” IEEE J. Photovoltaics (to be published).
  8. S. Baker-Finch and K. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovoltaics: Res. Appl. 19(4), 406–416 (2011). [CrossRef]
  9. S. J. Kim, G. Y. Margulis, S. B. Rim, M. L. Brongersma, M. D. McGehee, and P. Peumans, “Geometric light trapping with a V-trap for efficient organic solar cells,” Opt. Express 21(S3), A305–A312 (2013). [CrossRef] [PubMed]
  10. M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt: Res. Appl. 22(5), 540–547 (2014). [CrossRef]
  11. S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007). [CrossRef]
  12. G. Li, H. Li, J. Y. L. Ho, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin cSi tandem solar cells,” Nano Letters 14(5), 2563–2568 (2014). [CrossRef] [PubMed]
  13. D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Stat. Solidi 2(4), 163–165 (2008).
  14. S. Fahr, C. Rockstuhl, and F. Lederer, “Metallic nanoparticles as intermediate reflectors in tandem solar cells,” Appl. Phys. Lett. 95, 121105 (2009). [CrossRef]
  15. S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97, 173510 (2010). [CrossRef]
  16. P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, “Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study,” Opt. Express 18(5), 4478–4490 (2010). [CrossRef]
  17. S. Fahr, C. Rockstuhl, and F. Lederer, “Sandwiching intermediate reflectors in tandem solar cells for improved photon management,” Appl. Phys. Lett. 101, 133904 (2012). [CrossRef]
  18. P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012). [CrossRef]
  19. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008). [CrossRef] [PubMed]
  20. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy Environ. Sci. 7, 399–407 (2014). [CrossRef]
  21. S. De Wolf, J. Holovsky, S-J. Moon, P. Lop er, B. Niesen, M. Ledinsky, F-J. Haug, J-H. Yum, and C. Ballif, “Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance,” J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). [CrossRef]
  22. A. Martí and G. Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43, 203–222 (1996). [CrossRef]
  23. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014). [CrossRef]
  24. Z. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998). [CrossRef]
  25. M. A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovoltaics: Res. Appl. 17(3), 183–189 (2009). [CrossRef]
  26. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 36),” Progress in Photovolt: Res. Appl. 18(5), 346–352 (2010). [CrossRef]
  27. PV Lighthouse, OPAL 2, 2011., [Online]. http://www.pvlighthouse.com.au/calculators/OPAL2/OPAL2.aspx .
  28. Orfanidis, Electromagnetics Waves and Antennas, http://www.ece.rutgers.edu/orfanidi/ewa/ retrieved June 2013.
  29. F. Deschler, M. Price, S. Pathak, L. Klintberg, D. D. Jarausch, R. Higler, S. Huettner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited