OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S6 — Oct. 20, 2014
  • pp: A1431–A1439

Silicon nanodisk array design for effective light trapping in ultrathin c-Si

Inho Kim, Doo Seok Jeong, Wook Seong Lee, Won Mok Kim, Taek-Sung Lee, Doh-Kwon Lee, Jong-Han Song, Joon-Kon Kim, and Kyeong-Seok Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue S6, pp. A1431-A1439 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of ultrathin c-Si (crystalline silicon) wafers thinner than 20 μm for solar cells is a very promising approach to realize dramatic reduction in cell cost. However, the ultrathin c-Si requires highly effective light trapping to compensate optical absorption reduction. Conventional texturing in micron scale is hardly applicable to the ultrathin c-Si wafers; thus, nano scale texturing is demanded. In general, nanotexturing is inevitably accompanied by surface area enlargements, which must be minimized in order to suppress surface recombination of minority carriers. In this study, we demonstrate using optical simulations that periodic c-Si nanodisk arrays of short heights less than 200 nm and optimal periods are very useful in terms of light trapping in the ultrathin c-Si wafers while low surface area enlargements are maintained. Double side texturing with the nanodisk arrays leads to over 90% of the Lambertian absorption limit while the surface area enlargement is kept below 1.5.

© 2014 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(220.0220) Optical design and fabrication : Optical design and fabrication
(350.6050) Other areas of optics : Solar energy

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: July 22, 2014
Manuscript Accepted: August 9, 2014
Published: August 28, 2014

Inho Kim, Doo Seok Jeong, Wook Seong Lee, Won Mok Kim, Taek-Sung Lee, Doh-Kwon Lee, Jong-Han Song, Joon-Kon Kim, and Kyeong-Seok Lee, "Silicon nanodisk array design for effective light trapping in ultrathin c-Si," Opt. Express 22, A1431-A1439 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2009).
  2. J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011). [CrossRef]
  3. C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006). [CrossRef]
  4. S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013). [CrossRef] [PubMed]
  5. S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013). [CrossRef]
  6. S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).
  7. A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013). [CrossRef]
  8. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987). [CrossRef]
  9. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  10. S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010). [CrossRef] [PubMed]
  11. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014). [CrossRef] [PubMed]
  12. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012). [CrossRef] [PubMed]
  13. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011). [CrossRef] [PubMed]
  14. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984). [CrossRef]
  15. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013). [CrossRef] [PubMed]
  16. A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014). [CrossRef]
  17. H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014). [CrossRef]
  18. M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012). [CrossRef]
  19. M. Rahman and S. Khan, “Advances in surface passivation of c-Si solar cells,” Mater. Renewable Sustainable Energy 1(1), 1–11 (2012).
  20. A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000). [CrossRef]
  21. J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012). [CrossRef] [PubMed]
  22. J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012). [CrossRef]
  23. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011). [CrossRef] [PubMed]
  24. P. R. Pudasaini, D. Elam, and A. A. Ayon, “Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells,” J. Phys. D Appl. Phys. 46(23), 235104 (2013). [CrossRef]
  25. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008). [CrossRef]
  26. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012). [CrossRef] [PubMed]
  27. J. Gjessing, in Department of physics (University of Oslo, Oslo, 2011), Vol. Ph. D.
  28. J. Schmidt, A. Merkle, R. Bock, P. P. Altermatt, A. Cuevas, N.-P. Harder, B. Hoex, R. d. Sanden, E. Kessels, and R. Brendel, in 23rd European Photovoltaic Solar Energy Conference (Valencia, Spain, 2008).
  29. Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013). [CrossRef]
  30. X. Sheng, J. Hu, J. Michel, and L. C. Kimerling, “Light trapping limits in plasmonic solar cells: an analytical investigation,” Opt. Express 20(S4Suppl 4), A496–A501 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited