OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13975–13987

Elliptical Laguerre-Gaussian correlated Schell-model beam

Yahong Chen, Lin Liu, Fei Wang, Chengliang Zhao, and Yangjian Cai  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13975-13987 (2014)
http://dx.doi.org/10.1364/OE.22.013975


View Full Text Article

Enhanced HTML    Acrobat PDF (3689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new kind of partially coherent beam with non-conventional correlation function named elliptical Laguerre-Gaussian correlated Schell-model (LGCSM) beam is introduced. Analytical propagation formula for an elliptical LGCSM beam passing through a stigmatic ABCD optical system is derived. The elliptical LGCSM beam exhibits unique features on propagation, e.g., its intensity in the far field (or in the focal plane) displays an elliptical ring-shaped beam profile, being qualitatively different from the circular ring-shaped beam profile of the circular LGCSM beam. Furthermore, we carry out experimental generation of an elliptical LGCSM beam with controllable ellipticity, and measure its focusing properties. Our experimental results are consistent with the theoretical predictions. The elliptical LGCSM beam will be useful in atomic optics.

© 2014 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

History
Original Manuscript: April 14, 2014
Manuscript Accepted: May 23, 2014
Published: May 30, 2014

Citation
Yahong Chen, Lin Liu, Fei Wang, Chengliang Zhao, and Yangjian Cai, "Elliptical Laguerre-Gaussian correlated Schell-model beam," Opt. Express 22, 13975-13987 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13975


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Gori, M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007). [CrossRef] [PubMed]
  2. F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009). [CrossRef]
  3. H. Lajunen, T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011). [CrossRef] [PubMed]
  4. Z. Tong, O. Korotkova, “Non-uniformly correlated beams in uniformly correlated random media,” Opt. Lett. 37(15), 3240–3242 (2012). [CrossRef] [PubMed]
  5. Z. Tong, O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29(10), 2154–2158 (2012). [CrossRef] [PubMed]
  6. Y. Gu, G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013). [CrossRef] [PubMed]
  7. S. Sahin, O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012). [CrossRef] [PubMed]
  8. O. Korotkova, S. Sahin, E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29(10), 2159–2164 (2012). [CrossRef] [PubMed]
  9. O. Korotkova, “Random sources for rectangular far fields,” Opt. Lett. 39(1), 64–67 (2014). [CrossRef] [PubMed]
  10. S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013). [CrossRef]
  11. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013). [CrossRef]
  12. Y. Zhang, L. Liu, C. Zhao, Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378(9), 750–754 (2014). [CrossRef]
  13. C. Liang, F. Wang, X. Liu, Y. Cai, O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014). [CrossRef] [PubMed]
  14. Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014). [CrossRef]
  15. Z. Mei, O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013). [CrossRef] [PubMed]
  16. F. Wang, X. Liu, Y. Yuan, Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013). [CrossRef] [PubMed]
  17. R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, Y. Cai, “Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22(2), 1871–1883 (2014). [CrossRef] [PubMed]
  18. Y. Chen, Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam,” Opt. Lett. 39(9), 2549–2552 (2014). [CrossRef] [PubMed]
  19. Y. Chen, F. Wang, C. Zhao, Y. Cai, “Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam,” Opt. Express 22(5), 5826–5838 (2014). [CrossRef] [PubMed]
  20. J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 2003), Vol. 44, pp. 119–204.
  21. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999). [CrossRef] [PubMed]
  22. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001). [CrossRef] [PubMed]
  23. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995). [CrossRef] [PubMed]
  24. X. Xu, V. G. Minogin, K. Lee, Y. Wang, W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60(6), 4796–4804 (1999). [CrossRef]
  25. J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58(1), 509–513 (1998). [CrossRef]
  26. T. Kuga, T. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beams,” Phys. Rev. Lett. 78(25), 4713–4716 (1997). [CrossRef]
  27. F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987). [CrossRef]
  28. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000). [CrossRef] [PubMed]
  29. Y. Cai, X. Lu, Q. Lin, “Hollow Gaussian beam and its propagation,” Opt. Lett. 28(13), 1084–1086 (2003). [CrossRef] [PubMed]
  30. Z. Mei, D. Zhao, “Controllable dark-hollow beams and their propagation characteristics,” J. Opt. Soc. Am. A 22(9), 1898–1902 (2005). [CrossRef] [PubMed]
  31. Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32(21), 3179–3181 (2007). [CrossRef] [PubMed]
  32. Y. Cai, Z. Wang, Q. Lin, “An alternative theoretical model for an anomalous hollow beam,” Opt. Express 16(19), 15254–15267 (2008). [CrossRef] [PubMed]
  33. Y. Cai, Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21(6), 1058–1065 (2004). [CrossRef] [PubMed]
  34. Y. Cai, S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006). [CrossRef] [PubMed]
  35. Z. Mei, D. Zhao, “Controllable elliptical dark-hollow beams,” J. Opt. Soc. Am. A 23(4), 919–925 (2006). [CrossRef] [PubMed]
  36. J. C. Gutiérrez-Vega, “Characterization of elliptical dark hollow beams,” Proc. SPIE 7062, 706207 (2008). [CrossRef]
  37. C. Zhao, X. Lu, L. Wang, H. Chen, “Hollow elliptical Gaussian beams generated by a triangular prism,” Opt. Laser Technol. 40(3), 575–580 (2008). [CrossRef]
  38. H. Li, J. Yin, “Generation of a vectorial elliptic hollow beam by an elliptic hollow fiber,” Opt. Lett. 36(4), 457–459 (2011). [CrossRef] [PubMed]
  39. R. Chakraborty, A. Ghosh, “Generation of an elliptical hollow beam using Mathieu and Bessel functions,” J. Opt. Soc. Am. A 23(9), 2278–2282 (2006). [CrossRef]
  40. Z. Wang, Q. Lin, Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240(4-6), 357–362 (2004). [CrossRef]
  41. Y. Cai, H. T. Eyyuboğlu, Y. Baykal, “Scintillation of astigmatic dark hollow beams in weak atmospheric turbulence,” J. Opt. Soc. Am. A 25, 1497–1503 (2008). [CrossRef]
  42. X. Lü, Y. Cai, “Partially coherent circular and elliptical dark hollow beams and their paraxial propagations,” Phys. Lett. A 369(1-2), 157–166 (2007). [CrossRef]
  43. C. Zhao, Y. Cai, F. Wang, X. Lu, Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008). [CrossRef] [PubMed]
  44. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University, 1995).
  45. S. A. Collins., “Lens-system diffraction integral written in terms ofmatrix optics,” J. Opt. Soc. Am. 60(9), 1168–1177 (1970). [CrossRef]
  46. Q. Lin, Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27(4), 216–218 (2002). [CrossRef] [PubMed]
  47. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Department of Commerce, 1970).
  48. P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of Collet-Wolf source,” Opt. Commun. 29(3), 256–260 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited