OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14575–14587

Computational spectrometer based on a broadband diffractive optic

Peng Wang and Rajesh Menon  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14575-14587 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2163 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a simple, compact, low-cost spectrometer comprised of a broadband diffractive optic and a sensor array. The diffractive optic is designed to disperse incident collimated light onto the sensor array in a prescribed manner defined by its spatial-spectral point-spread function. By applying a novel nonlinear optimization method, we show that it is possible to reconstruct the unknown spectrum from the measured image on the sensor array. We experimentally reconstructed numerous spectra with resolution as small as ~1nm and bandwidths as large as 450nm. Furthermore, we readily resolved two spatially overlapping but spectrally distinct objects. The spectral resolution is determined by dispersion of the diffractive optic via a spectral correlation function, while the bandwidth is limited primarily by the quantum efficiency of the sensor array. Using simulations, we present a spectral extraction of solar radiation from 300nm to 2500nm with a resolution of ~0.11nm. Moreover, our technique utilizes almost all the incident photons owing to the high transmission efficiency of the broadband diffractive optic, which allows for fast spectroscopy with dim illumination. Due to its simple construction with no moving parts, our technique could have important applications in portable, low-cost spectroscopy.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(100.3190) Image processing : Inverse problems
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6190) Spectroscopy : Spectrometers
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 25, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: June 2, 2014
Published: June 5, 2014

Peng Wang and Rajesh Menon, "Computational spectrometer based on a broadband diffractive optic," Opt. Express 22, 14575-14587 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. B. Utter, J. R. C. López-Urrutia, P. Beiersdorfer, and E. Träbert, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002). [CrossRef]
  2. C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004). [CrossRef]
  3. T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 245–265 (2005). [CrossRef] [PubMed]
  4. R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004). [CrossRef]
  5. G. Fortin and N. McCarthy, “Chirped holographic grating used as the dispersive element in an optical spectrometer,” Appl. Opt. 44(23), 4874–4883 (2005). [CrossRef] [PubMed]
  6. I. Avrutsky, K. Chaganti, I. Salakhutdinov, and G. Auner, “Concept of a miniature optical spectrometer using integrated optical and micro-optical components,” Appl. Opt. 45(30), 7811–7817 (2006). [CrossRef] [PubMed]
  7. K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14(9), 4064–4072 (2006). [CrossRef] [PubMed]
  8. S. Babin, C. Peroz, A. Bugrov, A. Goltsov, I. Ivonin, V. Yankov, S. Dhuey, S. Cabrini, E.-B. Kley, and H. Schmidt, “Fabrication of novel digital optical spectrometer on chip,” J. Vac. Sci. Technol. B 27(6), 3187–3191 (2009). [CrossRef]
  9. B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013). [CrossRef] [PubMed]
  10. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013). [CrossRef]
  11. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008). [CrossRef] [PubMed]
  12. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced micro-spectrometer,” Opt. Express 18(1), 102–107 (2010). [CrossRef] [PubMed]
  13. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011). [CrossRef] [PubMed]
  14. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40(14), 2247–2252 (2001). [CrossRef] [PubMed]
  15. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and M. E. Sullivan, “Static two-dimensional aperture coding for multimodal, multiplex spectroscopy,” Appl. Opt. 45(13), 2965–2974 (2006). [CrossRef] [PubMed]
  16. S. D. Feller, H. Chen, D. J. Brady, M. E. Gehm, C. Hsieh, O. Momtahan, and A. Adibi, “Multiple order coded aperture spectrometer,” Opt. Express 15(9), 5625–5630 (2007). [CrossRef] [PubMed]
  17. C. Fernandez, B. D. Guenther, M. E. Gehm, D. J. Brady, and M. E. Sullivan, “Longwave infrared (LWIR) coded aperture dispersive spectrometer,” Opt. Express 15(9), 5742–5753 (2007). [CrossRef] [PubMed]
  18. B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012). [CrossRef] [PubMed]
  19. G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012). [CrossRef] [PubMed]
  20. G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013). [CrossRef]
  21. P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl., in press.
  22. P. Wang and R. Menon, “Three-dimensional lithography via digital holography,” in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTu3A.4.
  23. P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21(5), 6274–6285 (2013). [CrossRef] [PubMed]
  24. P. Wang and R. Menon, “Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states,” Opt. Express 22(S1), A99–A110 (2014). [CrossRef]
  25. P. Wang, C. G. Ebeling, J. Gerton, and R. Menon, “Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic,” Opt. Commun. 324, 73–80 (2014). [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
  27. K. Reimer, H. J. Quenzer, M. Juerss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997). [CrossRef]
  28. Data Sheet of the Ocean Optics HR2000 + CG High-Speed Broadband Spectrometer: http://www.oceanoptics.com/products/hr2000+cg.asp .
  29. P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms (SIAM Press, 2010).
  30. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009). [CrossRef] [PubMed]
  31. Andor Camera Model Clara specifications: http://www.andor.com/scientific-cameras/clara-interline-ccd-series/clara .
  32. Refractive index data of Ohara S-NPH3 glass: http://www.oharacorp.com/pdf/S-NPH3.pdf .
  33. American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  34. C. Moon, J. Shin, J. Kim, Y. K. Lee, Y. Cho, Y. Yu, S. Hwang, B. J. Park, H. Kim, S. Lee, J. Jung, S. Cho, K. Lee, K. Koh, D. Lee, and K. Kim, “Dedicated process architecture and the characteristics of 1.4μm pixel CMOS image sensor with 8M density,” in IEEE Symposium on VLSI Technology (2007), pp. 62–63.
  35. L. De Sio, N. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16(11), 7619–7624 (2008). [CrossRef] [PubMed]
  36. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited