OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14750–14756

Quasi-surface emission in vertical organic light-emitting transistors with network electrode

Chang-Min Keum, In-Ho Lee, Sin-Hyung Lee, Gyu Jeong Lee, Min-Hoi Kim, and Sin-Doo Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 14750-14756 (2014)
http://dx.doi.org/10.1364/OE.22.014750


View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a vertical-type organic light-emitting transistor (VOLET) with a network electrode of closed topology for quasi-surface emission. In our VOLET, the spatial distribution of the surface emission depends primarily on the relative scale of the aperture in the network electrode to the characteristic length for the charge carrier recombination. Due to the closed topology in the network of the source electrode, the charge transport and the resultant carrier recombination are substantially extended from individual network boundaries toward the corresponding aperture centers in the source electrode. The luminance was found to be well-controlled by the gate voltage through an organic semiconducting layer over the network source electrode.

© 2014 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(160.6000) Materials : Semiconductor materials
(230.0230) Optical devices : Optical devices
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optoelectronics

History
Original Manuscript: April 9, 2014
Manuscript Accepted: June 1, 2014
Published: June 9, 2014

Citation
Chang-Min Keum, In-Ho Lee, Sin-Hyung Lee, Gyu Jeong Lee, Min-Hoi Kim, and Sin-Doo Lee, "Quasi-surface emission in vertical organic light-emitting transistors with network electrode," Opt. Express 22, 14750-14756 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-14750


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. L. Guo, G. Yu, Y. Q. Liu, “Functional organic field-effect transistors,” Adv. Mater. 22(40), 4427–4447 (2010). [CrossRef] [PubMed]
  2. M. O’Neill, S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. 23(5), 566–584 (2011). [CrossRef] [PubMed]
  3. M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006). [CrossRef] [PubMed]
  4. F. Cicoira, C. Santato, “Organic light emitting field effect transistors: advances and perspectives,” Adv. Funct. Mater. 17(17), 3421–3434 (2007). [CrossRef]
  5. M. Muccini, W. Koopman, S. Toffanin, “The photonic perspective of organic light-emitting transistors,” Laser Photonics Rev. 6(2), 258–275 (2012). [CrossRef]
  6. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010). [CrossRef] [PubMed]
  7. B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, “Carbon-nanotube-enabled vertical field effect and light-emitting transistors,” Adv. Mater. 20(19), 3605–3609 (2008). [CrossRef]
  8. M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, “Low-voltage, low-power, organic light-emitting transistors for active matrix displays,” Science 332(6029), 570–573 (2011). [CrossRef] [PubMed]
  9. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, “Light-emitting field-effect transistor based on a tetracene thin film,” Phys. Rev. Lett. 91(15), 157406 (2003). [CrossRef] [PubMed]
  10. J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, H. Sirringhaus, “Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene,” Adv. Mater. 18(20), 2708–2712 (2006). [CrossRef]
  11. J. Zaumseil, R. H. Friend, H. Sirringhaus, “Spatial control of the recombination zone in an ambipolar light-emitting organic transistor,” Nat. Mater. 5(1), 69–74 (2006). [CrossRef]
  12. E. B. Namdas, P. Ledochowitsch, J. D. Yuen, D. Moses, A. J. Heeger, “High performance light emitting transistors,” Appl. Phys. Lett. 92(18), 183304 (2008). [CrossRef]
  13. J. Zaumseil, C. R. McNeill, M. Bird, D. L. Smith, P. Paul Ruden, M. Roberts, M. J. McKiernan, R. H. Friend, H. Sirringhaus, “Quantum efficiency of ambipolar light-emitting polymer field-effect transistors,” J. Appl. Phys. 103(6), 064517 (2008). [CrossRef]
  14. B. B. Y. Hsu, C. H. Duan, E. B. Namdas, A. Gutacker, J. D. Yuen, F. Huang, Y. Cao, G. C. Bazan, I. D. W. Samuel, A. J. Heeger, “Control of Efficiency, Brightness, and Recombination Zone in Light-Emitting Field Effect Transistors,” Adv. Mater. 24(9), 1171–1175 (2012). [CrossRef] [PubMed]
  15. T. Oyamada, H. Sasabe, Y. Oku, N. Shimoji, C. Adachi, “Estimation of carrier recombination and electroluminescence emission regions in organic light-emitting field-effect transistors using local doping method,” Appl. Phys. Lett. 88(9), 093514 (2006). [CrossRef]
  16. K. Yamane, H. Yanagi, A. Sawamoto, S. Hotta, “Ambipolar organic light emitting field effect transistors with modified asymmetric electrodes,” Appl. Phys. Lett. 90(16), 162108 (2007). [CrossRef]
  17. M. Schidleja, C. Melzer, H. von Seggern, “Electroluminescence from a pentacene based ambipolar organic field-effect transistor,” Appl. Phys. Lett. 94(12), 123307 (2009). [CrossRef]
  18. N. Suganuma, N. Shimoji, Y. Oku, S. Okuyama, K. Matsushige, “Organic light-emitting transistors with split-gate structure and PN-hetero-boundary carrier recombination sites,” Org. Electron. 9(5), 834–838 (2008). [CrossRef]
  19. V. Maiorano, A. Bramanti, S. Carallo, R. Cingolani, G. Gigli, “Organic light emitting field effect transistors based on an ambipolar p-i-n layered structure,” Appl. Phys. Lett. 96(13), 133305 (2010). [CrossRef]
  20. K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, K. Kudo, “Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate,” Appl. Phys. Lett. 89(10), 103525 (2006). [CrossRef]
  21. K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, K. Kudo, “Improvement of Metal–Insulator–Semiconductor-Type Organic Light-Emitting Transistors,” Jpn. J. Appl. Phys. 47(3), 1889–1893 (2008). [CrossRef]
  22. M. A. McCarthy, B. Liu, A. G. Rinzler, “High current, low voltage carbon nanotube enabled vertical organic field effect transistors,” Nano Lett. 10(9), 3467–3472 (2010). [CrossRef] [PubMed]
  23. A. J. Ben-Sasson, N. Tessler, “Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode,” Nano Lett. 12(9), 4729–4733 (2012). [CrossRef] [PubMed]
  24. A. J. Ben-Sasson, Z. H. Chen, A. Facchetti, N. Tessler, “Solution-processed ambipolar vertical organic field effect transistor,” Appl. Phys. Lett. 100(26), 263306 (2012). [CrossRef]
  25. H. Kleemann, A. A. Günther, K. Leo, B. Lüssem, “High-performance vertical organic transistors,” Small 9(21), 3670–3677 (2013). [CrossRef] [PubMed]
  26. A. J. Ben-Sasson, N. Tessler, “Patterned electrode vertical field effect transistor: Theory and experiment,” J. Appl. Phys. 110(4), 044501 (2011). [CrossRef]
  27. N. J. Watkins, L. Yan, Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals,” Appl. Phys. Lett. 80(23), 4384–4386 (2002). [CrossRef]
  28. F. Amy, C. Chan, A. Kahn, “Polarization at the gold/pentacene interface,” Org. Electron. 6(2), 85–91 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited