OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15335–15345

Subwavelength grating filtering devices

Junjia Wang, Ivan Glesk, and Lawrence R. Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 15335-15345 (2014)
http://dx.doi.org/10.1364/OE.22.015335


View Full Text Article

Enhanced HTML    Acrobat PDF (4453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and simulate the characteristics of optical filters based on subwavelength gratings. In particular, we demonstrate through numerical simulations the feasibility of implementing SWG Bragg gratings in silicon-on-insulator (SOI). We also propose SWG ring resonators in SOI and verify their operation using numerical simulations and experiments. The fabricated devices exhibit an extinction ratio as large as 30 dB and a Q-factor as high as ~20,000. These fundamental SWG filters can serve as building blocks for more complex devices.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 25, 2014
Revised Manuscript: May 11, 2014
Manuscript Accepted: June 10, 2014
Published: June 17, 2014

Citation
Junjia Wang, Ivan Glesk, and Lawrence R. Chen, "Subwavelength grating filtering devices," Opt. Express 22, 15335-15345 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-15335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lipson, “Silicon photonics: the optical spice rack,” Electron. Lett.45, 575–577 (2009).
  2. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express18(19), 20251–20262 (2010). [CrossRef] [PubMed]
  3. D. J. Lockwood and L. Pavesi, Silicon Photonics: Components and Integration, Vol. II (Springer, 2011).
  4. R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D. X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J Sel Top Quant20(4) 8201313 (2014).
  5. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010). [CrossRef] [PubMed]
  6. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18(15), 16146–16155 (2010). [CrossRef] [PubMed]
  7. P. J. Bock, P. Cheben, J. H. Schmid, A. Delâge, D.-X. Xu, S. Janz, and T. J. Hall, “Sub-wavelength grating mode transformers in silicon slab waveguides,” Opt. Express17(21), 19120–19133 (2009). [CrossRef] [PubMed]
  8. A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photon. Technol. Lett.23(19), 1406–1408 (2011). [CrossRef]
  9. A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. A. Ramos, Í. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett.37(3), 365–367 (2012). [CrossRef] [PubMed]
  10. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20(14), 15547–15558 (2012). [CrossRef] [PubMed]
  11. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, “Silicon photonic resonator sensors and devices,” Proc. SPIE8236, 823620 (2012). [CrossRef]
  12. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon Rev6(1), 47–73 (2012). [CrossRef]
  13. J. Y. Lee and P. M. Fauchet, “Slow-light dispersion in periodically patterned silicon microring resonators,” Opt. Lett.37(1), 58–60 (2012). [CrossRef] [PubMed]
  14. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov Phys Jetp-Ussr2, 466–475 (1956).
  15. P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A15(7), 1843–1851 (1998). [CrossRef]
  16. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  17. K. E. Oughstun and N. A. Cartwright, “On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion,” Opt. Express11(13), 1541–1546 (2003). [CrossRef] [PubMed]
  18. R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).
  19. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997). [CrossRef]
  20. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006). [CrossRef] [PubMed]
  21. I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express17(21), 18518–18524 (2009). [CrossRef] [PubMed]
  22. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol.19(12), 1938–1942 (2001). [CrossRef]
  23. S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express15(22), 14765–14771 (2007). [CrossRef] [PubMed]
  24. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  25. F. F. Liu, Q. Li, Z. Y. Zhang, M. Qiu, and Y. K. Su, “Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” Ieee J Sel Top Quant14(3), 706–712 (2008). [CrossRef]
  26. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express18(25), 26525–26534 (2010). [CrossRef] [PubMed]
  27. L. Zavargo-Peche, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res.123, 447–465 (2012). [CrossRef]
  28. Q. F. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  29. L. Chrostowski, and M. Hochberg, Silicon Photonics Design (Lulu, 2013).
  30. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B21(9), 1665–1673 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited