OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15710–15717

Multiple Fano resonances in spoof localized surface plasmons

Zhen Liao, Bai Cao Pan, Xiaopeng Shen, and Tie Jun Cui  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 15710-15717 (2014)
http://dx.doi.org/10.1364/OE.22.015710


View Full Text Article

Enhanced HTML    Acrobat PDF (3256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the occurrence of bright modes and dark modes in spoof localized surface plasmons (LSPs) generated by ultrathin corrugated metallic disks. As two such disks with asymmetric geometries are placed in close proximity, we find that dark modes (in multipoles) of one disk emerge by coupling with the bright modes (in dipoles) of the other disk. Then we further observe multiple Fano resonances due to destructive interferences of dark modes with the overlapping and broadened bright modes. These Fano line-shapes clearly exhibit the strong polarization dependence. We design and fabricate the ultrathin corrugated bi-disk structure in the microwave frequency, and the measurement results show reasonable agreement with theoretical predictions and numerical simulations. Such multiple Fano resonances could be exploited for the plasmonic devices at lower frequencies.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: April 29, 2014
Revised Manuscript: June 5, 2014
Manuscript Accepted: June 13, 2014
Published: June 19, 2014

Citation
Zhen Liao, Bai Cao Pan, Xiaopeng Shen, and Tie Jun Cui, "Multiple Fano resonances in spoof localized surface plasmons," Opt. Express 22, 15710-15717 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-15710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  4. H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004). [CrossRef] [PubMed]
  5. A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-modified Fano resonance in a one-lead quantum dot,” Phys. Rev. Lett.93(10), 106803 (2004). [CrossRef] [PubMed]
  6. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004). [CrossRef]
  7. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012). [CrossRef] [PubMed]
  8. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012). [CrossRef]
  9. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004). [CrossRef] [PubMed]
  10. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004). [CrossRef] [PubMed]
  11. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  13. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009). [CrossRef] [PubMed]
  14. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009). [CrossRef] [PubMed]
  15. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010). [CrossRef] [PubMed]
  16. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010). [CrossRef] [PubMed]
  17. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  18. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011). [CrossRef] [PubMed]
  19. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012). [CrossRef] [PubMed]
  20. W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012). [CrossRef] [PubMed]
  21. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express19(6), 4949–4956 (2011). [CrossRef] [PubMed]
  22. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  23. J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013). [CrossRef]
  24. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011). [CrossRef] [PubMed]
  25. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011). [CrossRef] [PubMed]
  26. J. Chen, Z. Li, J. Li, and Q. Gong, “Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference,” Opt. Express19(10), 9976–9985 (2011). [CrossRef] [PubMed]
  27. I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Fano phase resonances in multilayer metal-dielectric compound gratings,” Phys. Rev. A87(5), 053847 (2013). [CrossRef]
  28. I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Analytical description of the dispersion relation for phase resonances in compound transmission gratings,” Phys. Rev. A87(5), 053833 (2013). [CrossRef]
  29. A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013). [CrossRef]
  30. I. Bendoym, A. B. Golovin, and D. T. Crouse, “The light filtering and guiding properties of high finesse phase resonant compound gratings,” Opt. Express20(20), 22830–22846 (2012). [CrossRef] [PubMed]
  31. D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B77(19), 195437 (2008). [CrossRef]
  32. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010). [CrossRef] [PubMed]
  33. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011). [CrossRef] [PubMed]
  34. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  35. S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012). [CrossRef] [PubMed]
  36. Y. Sonnefraud, A. Leen Koh, D. McComb, and S. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev.6(3), 277–295 (2012). [CrossRef]
  37. N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011). [CrossRef] [PubMed]
  38. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  39. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt.7(2), S97–S101 (2005). [CrossRef]
  40. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  41. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005). [CrossRef] [PubMed]
  42. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013). [CrossRef] [PubMed]
  43. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett.102(21), 211909 (2013). [CrossRef]
  44. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013). [CrossRef]
  45. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014). [CrossRef]
  46. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012). [CrossRef] [PubMed]
  47. X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev.8(1), 137–145 (2014). [CrossRef]
  48. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited