OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16456–16461

Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron

Bojan Resan, Rodrigo Aviles-Espinosa, Sarah Kurmulis, Jacob Licea-Rodriguez, Felix Brunner, Andreas Rohrbacher, David Artigas, Pablo Loza-Alvarez, and Kurt J. Weingarten  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 16456-16461 (2014)
http://dx.doi.org/10.1364/OE.22.016456


View Full Text Article

Enhanced HTML    Acrobat PDF (1747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a low-cost, low-noise, tunable, high-peak-power, ultrafast laser system based on a SESAM-modelocked, solid-state Yb tungstate laser plus spectral broadening via a microstructured fiber followed by pulse compression. The spectral selection, tuning, and pulse compression are performed with a simple prism compressor. The output pulses are tunable from 800 to 1250 nm, with the pulse duration down to 25 fs, and average output power up to 150 mW, at 80 MHz pulse repetition rate. We introduce the figure of merit (FOM) for the two-photon and multi-photon imaging (or other nonlinear processes), which is a useful guideline in discussions and for designing the lasers for an improved microscopy signal. Using a 40 MHz pulse repetition rate laser system, with twice lower FOM, we obtained high signal-to-noise ratio two-photon fluorescence images with or without averaging, of mouse intestine section and zebra fish embryo. The obtained images demonstrate that the developed system is capable of nonlinear (TPE, SHG) imaging in a multimodal operation. The system could be potentially used in a variety of other techniques including, THG, CARS and applications such as nanosurgery.

© 2014 Optical Society of America

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Imaging Systems

History
Original Manuscript: May 28, 2014
Revised Manuscript: June 18, 2014
Manuscript Accepted: June 19, 2014
Published: June 26, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Bojan Resan, Rodrigo Aviles-Espinosa, Sarah Kurmulis, Jacob Licea-Rodriguez, Felix Brunner, Andreas Rohrbacher, David Artigas, Pablo Loza-Alvarez, and Kurt J. Weingarten, "Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron," Opt. Express 22, 16456-16461 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-16456


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002). [CrossRef] [PubMed]
  3. F. Bourgeois and A. Ben-Yakar, “Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans,” Opt. Express15(14), 8521–8531 (2007). [CrossRef] [PubMed]
  4. G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012). [CrossRef] [PubMed]
  5. S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013). [CrossRef] [PubMed]
  6. M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009). [CrossRef]
  7. E.g. Chameleon laser from Coherent Inc. http://www.coherent.com/products/?1557/Chameleon-Family or Mai Tai laser from Newport http://www.newport.com/Mai-Tai-One-Box-Tunable-Ultrafast-Lasers/368124/1033/info.aspx
  8. F. Brunner, G. J. Spühler, J. A. Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power,” Opt. Lett.25(15), 1119–1121 (2000). [CrossRef] [PubMed]
  9. F. Druon, F. Balembois, and P. Georges, “New materials for short-pulse amplifiers,” IEEE Photon. J.3(2), 268–273 (2011). [CrossRef]
  10. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012). [CrossRef] [PubMed]
  11. P. S. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  12. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  13. www.nkt.com
  14. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  15. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron.5(4), 1185–1192 (1999). [CrossRef]
  16. R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010). [CrossRef] [PubMed]
  17. U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  18. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011). [CrossRef] [PubMed]
  19. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006). [CrossRef] [PubMed]
  20. C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, “SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion,” Opt. Express22(5), 6060–6077 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited