OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17573–17589

Architecture and applications of a high resolution gated SPAD image sensor

Samuel Burri, Yuki Maruyama, Xavier Michalet, Francesco Regazzoni, Claudio Bruschini, and Edoardo Charbon  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 17573-17589 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers.

© 2014 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(110.0110) Imaging systems : Imaging systems
(180.2520) Microscopy : Fluorescence microscopy
(230.5160) Optical devices : Photodetectors
(100.0118) Image processing : Imaging ultrafast phenomena

ToC Category:

Original Manuscript: April 9, 2014
Revised Manuscript: May 27, 2014
Manuscript Accepted: June 16, 2014
Published: July 11, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Samuel Burri, Yuki Maruyama, Xavier Michalet, Francesco Regazzoni, Claudio Bruschini, and Edoardo Charbon, "Architecture and applications of a high resolution gated SPAD image sensor," Opt. Express 22, 17573-17589 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Haitz, A. Goetzberger, R. M. Scarlett, and W. Shockley, “Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas,” J. Appl. Phys. 34, 1581 (1963). [CrossRef]
  2. A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, “Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions,” J. Appl. Phys. 34, 1591 (1963). [CrossRef]
  3. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981). [CrossRef]
  4. R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985). [CrossRef]
  5. A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003). [CrossRef]
  6. E. Charbon and S. Donati, “SPAD sensors come of age,” Opt. Photonics News 21, 34–41 (2010). [CrossRef]
  7. M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).
  8. A. P. Singh, J. W. Krieger, J. Buchholz, E. Charbon, J. Langowski, and T. Wohland, “The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy,” Opt. Express 21, 8652–8668 (2013). [CrossRef] [PubMed]
  9. S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012). [CrossRef]
  10. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256×64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20, 11863–11881 (2012). [CrossRef] [PubMed]
  11. L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014). [CrossRef]
  12. J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser raman spectroscopy,” Opt. Lett. 36, 3672–3674 (2011). [CrossRef] [PubMed]
  13. R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011). [CrossRef]
  14. E. S. Harmon, M. Naydenkov, and J. T. Hyland, “Compound semiconductor SPAD arrays,” Proc. SPIE 8727, 87270N (2013). [CrossRef]
  15. E. Charbon and M. W. Fishburn, Monolithic Single-Photon Avalanche Diodes: SPADs (Springer, 2011), chap. 7, pp. 123–156.
  16. Y. Maruyama and E. Charbon, “A time-gated 128×128 CMOS SPAD array for on-chip fluorescence detection,” Proc. Intl. Image Sensor Workshop (IISW) (2011).
  17. R. J. Walker, E. A. G. Webster, J. Li, N. Massari, and R. Henderson, “High fill factor digital silicon photomultiplier structures in 130nm CMOS imaging technology,” IEEE NSS/MIC (2012).
  18. S. Donati, G. Martini, and M. Norgia, “Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits,” Opt. Express 15, 18066–18075 (2007). [CrossRef] [PubMed]
  19. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).
  20. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014). [CrossRef] [PubMed]
  21. M. Motoyoshi, “Through-silicon via (TSV),” Proc. IEEE 97, 43–48 (2009). [CrossRef]
  22. S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008). [CrossRef]
  23. M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012). [CrossRef]
  24. R. M. Clegg, Fluorescence Imaging Spectroscopy and Microscopy (John Wiley & Sons, 1996).
  25. K. Suhling, “Fluorescence lifetime imaging,” in “Cell Imaging,”, D. Stephens, ed. (Scion Publishing, Bloxham, 2006).
  26. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010). [CrossRef] [PubMed]
  27. R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012). [CrossRef] [PubMed]
  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), p. 954.
  29. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010). [CrossRef]
  30. W. Wei, G. Xie, A. Dang, and H. Guo, “High-speed and bias-free optical random number generator,” IEEE Photonics Technol. Lett. 24, 437–439 (2012). [CrossRef]
  31. NIST, “A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications,” Pub 800-22 rev1a (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (19334 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited