OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18113–18118

Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams

Yongyin Cao, Wenhe Song, Weiqiang Ding, Fangkui Sun, and TongTong Zhu  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18113-18118 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on a hybrid discrete dipole approximation (DDA) and T-matrix method, a powerful dynamic simulation model is used to find plausible equilibrium orientation landscapes of micro- and nano-spheroids of varying size and aspect ratio. Orientation landscapes of spheroids are described in both linearly and circularly polarized Gaussian beams. It’s demonstrated that the equilibrium orientations of the prolate and oblate spheroids have different performances. Effect of beam polarization on orientation landscapes is revealed as well as new orientation of oblate spheroids. The torque efficiencies of spheroids at equilibrium are also studied as functions of tilt angle, from which the orientations of the spheroids can be affirmed. This investigation elucidates a solid background in both the function and properties of micro-and nano-spheroidal particles trapped in optical tweezers.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: May 12, 2014
Revised Manuscript: July 11, 2014
Manuscript Accepted: July 11, 2014
Published: July 18, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Yongyin Cao, Wenhe Song, Weiqiang Ding, Fangkui Sun, and TongTong Zhu, "Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams," Opt. Express 22, 18113-18118 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. M. Gu, S. Kuriakose, and X. S. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007). [CrossRef] [PubMed]
  3. G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14(25), 12497–12502 (2006). [CrossRef] [PubMed]
  4. M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012). [CrossRef]
  5. O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8, 217–222 (2001).
  6. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond. A 459(2040), 3021–3041 (2003). [CrossRef]
  7. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007). [CrossRef]
  8. A. A. R. Neves, A. Fontes, L. Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14(26), 13101–13106 (2006). [CrossRef] [PubMed]
  9. D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express 20(28), 29679–29693 (2012). [CrossRef] [PubMed]
  10. M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010). [CrossRef]
  11. L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009). [CrossRef]
  12. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50(10), 1581–1590 (2003). [CrossRef]
  13. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001). [CrossRef]
  14. S. H. Simpson and S. Hanna, “Optical trapping of dielectric ellipsoids,” Proc. SPIE 7762, 77621B (2010). [CrossRef]
  15. M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 097006 (2012). [CrossRef] [PubMed]
  16. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24(2), 430–443 (2007). [CrossRef] [PubMed]
  17. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003). [CrossRef]
  18. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011). [CrossRef]
  19. V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1460–1471 (2009). [CrossRef]
  20. S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19(17), 16526–16541 (2011). [CrossRef] [PubMed]
  21. E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977). [CrossRef]
  22. M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Comput. Phys. Commun. 182(2), 400–408 (2011). [CrossRef]
  23. Y. Y. Cao, A. B. Stilgoe, L. X. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012). [CrossRef] [PubMed]
  24. O. A. Bauchau and L. Trainelli, “The vectorial parameterization of rotation,” Nonlinear Dyn. 32(1), 71–92 (2003). [CrossRef]
  25. S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84(5), 053808 (2011). [CrossRef]
  26. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009). [CrossRef] [PubMed]
  27. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited