OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18513–18518

Effects of silica nanoparticles on electro-optical properties of polymer-stabilized liquid crystals

Che-Ju Hsu, Chih-Chin Kuo, Chia-Ding Hsieh, and Chi-Yen Huang  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18513-18518 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1852 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We control the pretilt angle of liquid crystals (LCs) by simultaneously doping silica nanoparticles (SNs) and reactive monomers into the LC cell. Application of AC high voltage (ACHV) to the cell compels the lifting force and the facilitation of polar groups to move the SNs and monomers toward the substrate surface. Polymer networks and SNs are stabilized at the substrate surface after UV exposure, sustaining the LCs at high pretilt angles. The deposited SNs on the substrate surface increases the anchoring energy of the substrate; the dispersed SNs in the cell decrease the relaxation constant of LCs. Therefore, the response time of the high-pretilted-polymer-stabilized LC cell is decreased. The method enables the control of the LC pretilt angle over a broad range. The slow response time of the polymer-stabilized LC cell from high monomer dose can also be prevented following the addition of SNs.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(160.6030) Materials : Silica
(230.2090) Optical devices : Electro-optical devices

ToC Category:

Original Manuscript: May 14, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: July 16, 2014
Published: July 23, 2014

Che-Ju Hsu, Chih-Chin Kuo, Chia-Ding Hsieh, and Chi-Yen Huang, "Effects of silica nanoparticles on electro-optical properties of polymer-stabilized liquid crystals," Opt. Express 22, 18513-18518 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009). [CrossRef]
  2. F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett. 88(5), 051910 (2006). [CrossRef]
  3. W. Y. Wu, C. C. Wang, and A. Y. G. Fuh, “Controlling pre-tilt angles of liquid crystal using mixed polyimide alignment layer,” Opt. Express 16(21), 17131–17137 (2008). [CrossRef] [PubMed]
  4. T. Uchida, M. Ohgawara, and M. Wada, “SiO2 liquid crystal orientation on the surface of obliquely-evaporated silicon monoxide with homeotropic surface treatment,” Jpn. J. Appl. Phys. 19(11), 2127–2136 (1980). [CrossRef]
  5. J. B. Kim, K. C. Kim, H. J. Ahn, B. H. Hwang, J. T. Kim, S. J. Jo, C. S. Kim, H. K. Baik, C. J. Choi, M. K. Jo, Y. S. Kim, J. S. Park, and D. Kang, “No bias pi cell using a dual alignment layer with an intermediate pretilt angle,” Appl. Phys. Lett. 91(2), 023507 (2007). [CrossRef]
  6. F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004). [CrossRef]
  7. J. B. Kim, K. C. Kim, H. J. Ahn, B. H. Hwang, D. C. Hyun, and H. K. Baik, “Variable liquid crystal pretilt angles on various compositions of alignment layers,” Appl. Phys. Lett. 90(4), 043515 (2007). [CrossRef]
  8. H. J. Ahn, J. B. Kim, K. C. Kim, B. H. Hwang, J. T. Kim, H. K. Baik, J. S. Park, and D. Kang, “Liquid crystal pretilt angle control using adjustable wetting properties of alignment layers,” Appl. Phys. Lett. 90(25), 253505 (2007). [CrossRef]
  9. V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010). [CrossRef]
  10. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013). [CrossRef] [PubMed]
  11. O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007). [CrossRef] [PubMed]
  12. C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2R), 021702 (2011). [CrossRef]
  13. S. W. Liao, C. T. Hsieh, C. C. Kuo, and C. Y. Huang, “Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions,” Appl. Phys. Lett. 101(16), 161906 (2012). [CrossRef]
  14. C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008). [CrossRef]
  15. W. Li, M. Zhu, X. Ding, B. Li, W. Hung, H. Cao, Z. Yang, and H. Yang, “Studies on electro-optical properties of polymer matrix/LC/SiO2 nanoparticles composites,” J. Appl. Polym. Sci. 111(3), 1449–1453 (2009). [CrossRef]
  16. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007). [CrossRef]
  17. L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013). [CrossRef] [PubMed]
  18. L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(5), 051706 (2012). [CrossRef] [PubMed]
  19. X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Tech. 3(3), 280–283 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited