OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18860–18869

Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm

Wei-Sheng Liu, Hsin-Lun Tseng, and Po-Chen Kuo  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 18860-18869 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, the optical properties of InAs quantum dots (QDs) with various strain-reducing layers (SRLs) of GaAsSb and InGaAsSb are characterized using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The room-temperature PL results for the InAs/InGaAsSb QDs revealed stronger emission intensities than InAs QDs capped with an GaAs1-xSbx (x = 20%)SRL, although both samples were grown under the same Sb flux during the molecular beam epitaxy process. The InAs/InGaAsSb QDs showed a significant elongation of emission wavelengths to 1450 and 1310 nm for the ground and first-excited state at room temperature. The energy band alignment of the InAs QD heterostructures was found tailoring from type II to type I as the GaAsSb SRL was replaced by InGaAsSb layer, which improved the radiative efficiency and was verified by power-dependent PL and TRPL measurements. Post-growth rapid thermal annealing was applied on the InAs/InGaAsSb QDs to further enhance the QD quality and PL emission efficiency. The greatly improved PL intensity, reduced linewidth, shortened radiative lifetime, with increasing annealing temperature were demonstrated, and InAs/InGaAsSb QDs exhibited enhanced optical characteristics for long-wavelength emission applications.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5230) Optoelectronics : Photoluminescence
(250.5960) Optoelectronics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: June 12, 2014
Revised Manuscript: July 18, 2014
Manuscript Accepted: July 18, 2014
Published: July 28, 2014

Wei-Sheng Liu, Hsin-Lun Tseng, and Po-Chen Kuo, "Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm," Opt. Express 22, 18860-18869 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982). [CrossRef]
  2. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998). [CrossRef]
  3. K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999). [CrossRef]
  4. B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009). [CrossRef]
  5. C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22μm tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011). [CrossRef]
  6. M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005). [CrossRef]
  7. M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).
  8. W.-S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 μm InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006). [CrossRef]
  9. J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005). [CrossRef]
  10. M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999). [CrossRef]
  11. G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).
  12. M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003). [CrossRef]
  13. J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78(22), 3469 (2001). [CrossRef]
  14. W.-S. Liu and J. I. Chyi, “Optical properties of InAs quantum dots with InAlAs/InGaAs composite matrix,” J. Appl. Phys. 97(2), 024312 (2005). [CrossRef]
  15. W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013). [CrossRef]
  16. K. Akahane, N. Yamamoto, and N. Ohtani, “Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates,” Physica E 21(2–4), 295–299 (2004). [CrossRef]
  17. W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013). [CrossRef]
  18. D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007). [CrossRef]
  19. D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007). [CrossRef]
  20. W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011). [CrossRef]
  21. J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007). [CrossRef]
  22. J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010). [CrossRef]
  23. H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005). [CrossRef]
  24. J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006). [CrossRef]
  25. J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006). [CrossRef]
  26. H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006). [CrossRef]
  27. C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007). [CrossRef]
  28. W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
  29. W.-S. Liu and C.-M. Chang, “Capping InAs quantum dots with an InGaAsSb strain-reducing layer to improve optical properties and dot-size uniformity,” Thin Solid Films, in press (2014).
  30. S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987 (1997). [CrossRef]
  31. W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008). [CrossRef]
  32. Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009). [CrossRef]
  33. T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007). [CrossRef]
  34. K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
  35. M. P. C. M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991). [CrossRef]
  36. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996), Vols. 1 and 2.
  37. K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).
  38. W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010). [CrossRef]
  39. H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011). [CrossRef]
  40. R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998). [CrossRef]
  41. R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996). [CrossRef]
  42. T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000). [CrossRef]
  43. S. Sengupta, N. Halder, and S. Chakrabarti, “Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness,” Mater. Res. Bull. 45(11), 1593–1597 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited