OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18924–18933

Investigation of fragment sizes in laser-driven shock-loaded tin with improved watershed segmentation method

Weihua He, Jianting Xin, Genbai Chu, Jing Li, Jianli Shao, Feng Lu, Min Shui, Feng Qian, Leifeng Cao, Pei Wang, and Yuqiu Gu  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 18924-18933 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Studying dynamic fragmentation in shock-loaded metals and evaluating the geometrical and kinematical properties of the resulting fragments are of significant importance in shock physics, material science as well as microstructural modeling. In this paper, we performed the laser-driven shock-loaded experiment on the Shenguang-Ш (SGШ) prototype laser facility, and employed X-ray micro-tomography technique to give a whole insight into the actual fragmentation process. To investigate the size distribution of the soft recovered fragments from Poly 4-methyl-1-pentene (PMP) foam sample, we further developed an automatic analysis approach based on the improved watershed segmentation. Comparison results of segmenting fragments in slices with different methods demonstrated that our proposed segmentation method can overcome the drawbacks of under-segmentation and over-segmentation, and has the best performance in both segmentation accuracy and robustness. With the proposed automatic analysis approach, other parameters such as the position distribution and penetration depth are also obtained, which are very helpful for understanding the dynamic failure mechanisms.

© 2014 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(100.3010) Image processing : Image reconstruction techniques
(100.6950) Image processing : Tomographic image processing
(110.7440) Imaging systems : X-ray imaging

ToC Category:
Image Processing

Original Manuscript: April 30, 2014
Revised Manuscript: July 3, 2014
Manuscript Accepted: July 9, 2014
Published: July 29, 2014

Weihua He, Jianting Xin, Genbai Chu, Jing Li, Jianli Shao, Feng Lu, Min Shui, Feng Qian, Leifeng Cao, Pei Wang, and Yuqiu Gu, "Investigation of fragment sizes in laser-driven shock-loaded tin with improved watershed segmentation method," Opt. Express 22, 18924-18933 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys.109(3), 530–535 (2009). [CrossRef]
  2. M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys.102(1), 013522 (2007). [CrossRef]
  3. L. Signor, G. Roy, P. Y. Channal, P. L. Héreil, F. Buy, C. Voltz, F. Llorca, T. de Rességuier, and A. Dragon, “Debris cloud ejection from shock-loaded tin melted on release or on compression,” AIP proceedings on Shock Compression of Condensed Matter (2009). [CrossRef]
  4. T. de Rességuier, E. Lescoute, L. Signor, D. Loison, A. Dragon, M. Boustie, J. P. Cuq-Lelandais, and L. Berthe, “Laser shock experiments to investigate and to model various aspects of the response of metals to shock loading,” EPJ Web of Conferences 10, 00023 (2010). [CrossRef]
  5. S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res.24(4), 409–422 (2004). [CrossRef]
  6. K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng.25(7), 631–639 (2001). [CrossRef]
  7. D. B. Holtkamp, D. A. Clark, E. N. Ferm, R. A. Gallegos, D. Hammon, W. F. Hemsing, G. E. Hogan, V. H. Holmes, N. S. P. King, R. Liljestrand, R. P. Lopez, F. E. Merrill, C. L. Morris, K. B. Morley, M. M. Murray, P. D. Pazuchanics, K. P. Prestridge, J. P. Quintana, A. Saunders, T. Schafer, M. A. Shinas, and H. L. Stacy, “A survey of high explosive-induced damage and spall in selected metals using proton radiography,” AIP proceedings on Shock Compression of Condensed Matter 706,477–482 (2004). [CrossRef]
  8. T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys.101(1), 013506 (2007). [CrossRef]
  9. L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng.37(8), 887–900 (2010). [CrossRef]
  10. L. Signor, T. de Rességuier, G. Roy, A. Dragon, and F. Liorca, “Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues,” AIP proceedings on Shock Compression of Condensed Matter 706,593–596 (2008). [CrossRef]
  11. P. Soille, “Morphological image analysis: principles and applications,” 2nd Ed, Springer-Verlag, Berlin Heidelberg, Charper 6, 183–216 (2002).
  12. L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell.13(6), 583–598 (1991). [CrossRef]
  13. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979). [CrossRef]
  14. D. Nam, J. Mantel, D. Bull, P. Verkade, and A. Achim, “Segmentation and analysis insulin granule membranes in beta islet cell electron micrographs,” 20th European Signal Processing conference, 2228–2232 (2012).
  15. D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell.26(5), 530–549 (2004). [CrossRef] [PubMed]
  16. S. Kumar, S. H. Ong, S. Ranganath, and F. T. Chew, “Invariant texture classification for biomedical cell specimens via non-linear polar map filtering,” Comput. Vis. Image Underst.114(1), 44–53 (2010). [CrossRef]
  17. J. M. Gauch, “Image segmentation and analysis via multiscale gradient watershed hierarchies,” IEEE Trans. Image Process.8(1), 69–79 (1999). [CrossRef] [PubMed]
  18. L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” Int. J. Comput. Vis.50(3), 271–293 (2002). [CrossRef]
  19. M. Sezgin, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging13(1), 146–165 (2004). [CrossRef]
  20. J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited