OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18940–18948

Ray tracing analysis of inclined illumination techniques

József Sinkó, Gábor Szabó, and Miklós Erdélyi  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 18940-18948 (2014)
http://dx.doi.org/10.1364/OE.22.018940


View Full Text Article

Enhanced HTML    Acrobat PDF (1842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reduction of out of focus signal is a general task in fluorescence microscopy and is especially important in the recently developed super-resolution techniques because of the degradation of the final image. Several illumination methods have been developed to provide decreased out of focus signal level relative to the common epifluorescent illumination. In this paper we examine the highly inclined and the total internal reflection illumination techniques using the ray tracing method. Two merit functions were introduced for the quantitative description of the excitation of the selected region. We studied the feasibility of illumination methods, and the required corrections arising from the imperfections of the optical elements.

© 2014 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(180.2520) Microscopy : Fluorescence microscopy
(110.2945) Imaging systems : Illumination design

ToC Category:
Geometric Optics

History
Original Manuscript: May 8, 2014
Revised Manuscript: June 25, 2014
Manuscript Accepted: July 22, 2014
Published: July 29, 2014

Citation
József Sinkó, Gábor Szabó, and Miklós Erdélyi, "Ray tracing analysis of inclined illumination techniques," Opt. Express 22, 18940-18948 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-18940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lakovich, Principles of Fluorescence Spectroscopy (Plenum, 1986), Chap. 21.
  2. D. Axelrod, “Total internal reflection fluorescence microscopy,” in Optical Imaging and Microscopy, Vol. 87 of Springer Series in Optical Sciences, P. Torok and F. J. Kao, eds. (Springer Verlag, 2007), Chap. 8.
  3. C. A. Konopka and S. Y. Bednarek, “Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex,” Plant J.53(1), 186–196 (2008). [CrossRef] [PubMed]
  4. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods5(2), 159–161 (2008). [CrossRef] [PubMed]
  5. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express16(25), 20306–20316 (2008). [CrossRef] [PubMed]
  6. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  7. J. Huisken, J. Swoger, S. Lindek, and E. H. K. Stelzer, “Selective Plane Illumination Microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer, 2006), pp. 672–679.
  8. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  9. S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011). [CrossRef] [PubMed]
  10. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  11. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  12. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol.89(1), 141–145 (1981). [CrossRef] [PubMed]
  13. A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci.123(Pt 21), 3621–3628 (2010). [CrossRef] [PubMed]
  14. Lambda Research Corp., OSLO optics software, optics reference ver. 6.1.
  15. M. Mandai and K. Yamaguchi, “Immersion microscope objective lens”, US patent US 7,046,451 B2 (2006).
  16. G. Gajdátsy and M. Erdelyi, “Analysis of focus distortion based on birefringence,” J. Opt. A, Pure Appl. Opt.9(11), 982–987 (2007). [CrossRef]
  17. L. M. Bennie, P. T. Starkey, M. Jasperse, C. J. Billington, R. P. Anderson, and L. D. Turner, “A versatile high resolution objective for imaging quantum gases,” Opt. Express21(7), 9011–9016 (2013). [CrossRef] [PubMed]
  18. J. P. Zinter and M. J. Levene, “Maximizing fluorescence collection efficiency in multiphoton microscopy,” Opt. Express19(16), 15348–15362 (2011). [CrossRef] [PubMed]
  19. J. A. Buytaert and J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution,” J. Biomed. Opt.12(1), 014039 (2007). [CrossRef] [PubMed]
  20. Y. Lu, T. Bifano, S. Ünlü, and B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express21(23), 28189–28197 (2013). [CrossRef] [PubMed]
  21. O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol.56(13), 4013–4021 (2011). [CrossRef] [PubMed]
  22. S. van de Linde and M. Sauer, “How to switch a fluorophore: From undesired blinking to controlled photoswitching,” Chem. Soc. Rev.43(4), 1076–1087 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited