OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19055–19068

Avoiding entanglement sudden death using single-qubit quantum measurement reversal

Hyang-Tag Lim, Jong-Chan Lee, Kang-Hee Hong, and Yoon-Ho Kim  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19055-19068 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2589 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When two entangled qubits, each owned by Alice and Bob, undergo separate decoherence, the amount of entanglement is reduced, and often, weak decoherence causes complete loss of entanglement, known as entanglement sudden death. Here we show that it is possible to apply quantum measurement reversal on a single-qubit to avoid entanglement sudden death, rather than on both qubits. Our scheme has important applications in quantum information processing protocols based on distributed or stored entangled qubits as they are subject to decoherence.

© 2014 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: June 27, 2014
Manuscript Accepted: July 11, 2014
Published: July 29, 2014

Hyang-Tag Lim, Jong-Chan Lee, Kang-Hee Hong, and Yoon-Ho Kim, "Avoiding entanglement sudden death using single-qubit quantum measurement reversal," Opt. Express 22, 19055-19068 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).
  2. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London) 404, 247–255 (2000). [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef] [PubMed]
  4. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997). [CrossRef]
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  6. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004). [CrossRef] [PubMed]
  7. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007). [CrossRef] [PubMed]
  8. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998). [CrossRef]
  9. P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000). [CrossRef] [PubMed]
  10. P. Facchi, D. A. Lidar, and S. Pascazio, “Unification of dynamical decoupling and the quantum Zeno effect,” Phys. Rev. A 69, 032314 (2004). [CrossRef]
  11. S. Maniscalco, F. Francica, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008). [CrossRef] [PubMed]
  12. J. G. Oliveira, R. Rossi, and M. C. Nemes, “Protecting, enhancing, and reviving entanglement,” Phys. Rev. A 78, 044301 (2008). [CrossRef]
  13. J. A. Schreier, A. A. Houck, Jens Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Suppressing charge noise decoherence in superconducting charge qubits,” Phys. Rev. B 77, 180502(R) (2008). [CrossRef]
  14. L. Viola, E. M. Fortunato, M. A. Pravia, E. Knill, R. Laflamme, and D. G. Cory, “Experimental realization of noiseless subsystems for quantum information processing,” Science 293, 2059–2063 (2001). [CrossRef] [PubMed]
  15. D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, “A decoherence-free quantum memory using trapped ions,” Science 291, 1013–1015 (2001). [CrossRef] [PubMed]
  16. M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum Error correction,” Phys. Rev. Lett. 82, 2598–2601 (1999). [CrossRef]
  17. A. N. Korotkov and A. N. Jordan, “Undoing weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97, 166805 (2006). [CrossRef]
  18. Q. Sun, M. Al-Amri, and M. S. Zubairy, “Reversing the weak measurement of an arbitrary field with finite photon number,” Phys. Rev. A 80, 033838 (2009). [CrossRef]
  19. N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a super-conducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008). [CrossRef]
  20. Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17, 11978–11985 (2009). [CrossRef] [PubMed]
  21. A. N. Korotkov and K. Keane, “Decoherence suppression by quantum measurement reversal,” Phys. Rev. A 81, 040103(R) (2010). [CrossRef]
  22. J.-C. Lee, Y.-C. Jeong, Y.-S. Kim, and Y.-H. Kim, “Experimental demonstration of decoherence suppression via quantum measurement reversal,” Opt. Express 19, 16309–16316 (2011). [CrossRef] [PubMed]
  23. Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010). [CrossRef]
  24. Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012). [CrossRef]
  25. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef] [PubMed]
  26. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef] [PubMed]
  27. P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature (London) 409, 1014–1017 (2001). [CrossRef]
  28. J.-W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature (London) 410, 1067–1070 (2001). [CrossRef]
  29. J. P. Groen, D. Ristè, L. Tornberg, J. Cramer, P. C. de Groot, T. Picot, G. Johansson, and L. DiCarlo, “Partial-measurement backaction and nonclassical weak values in a superconducting circuit,” Phys. Rev. Lett. 111, 090506 (2013). [CrossRef] [PubMed]
  30. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  31. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited