OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19169–19182

Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm

Irnis Kubat, Christian S. Agger, Uffe Møller, Angela B. Seddon, Zhuoqi Tang, Slawomir Sujecki, Trevor M. Benson, David Furniss, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Bruce Napier, Mark Farries, Jon Ward, Peter M. Moselund, and Ole Bang  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19169-19182 (2014)
http://dx.doi.org/10.1364/OE.22.019169


View Full Text Article

Enhanced HTML    Acrobat PDF (1801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr3+) chalcogenide fibre lasers. The 4.5um laser is assumed to have a repetition rate of 4MHz with 50ps long pulses having a peak power of 4.7kW. A thorough fibre design optimisation was conducted using measured material dispersion (As-Se/Ge-As-Se) and measured fibre loss obtained in fabricated fibre of the same materials. The loss was below 2.5dB/m in the 3.3–9.4μm region. Fibres with 8 and 10μm core diameters generated an SC out to 12.5 and 10.7μm in less than 2m of fibre when pumped with 0.75 and 1kW, respectively. Larger core fibres with 20μm core diameters for potential higher power handling generated an SC out to 10.6μm for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8–10μm band was 7.5 and 8.8mW for the 8 and 10μm fibres, respectively. For the 20μm core fibres up to 46mW was converted.

© 2014 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(160.2750) Materials : Glass and other amorphous materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics

History
Original Manuscript: June 9, 2014
Revised Manuscript: July 18, 2014
Manuscript Accepted: July 19, 2014
Published: July 31, 2014

Citation
Irnis Kubat, Christian S. Agger, Uffe Møller, Angela B. Seddon, Zhuoqi Tang, Slawomir Sujecki, Trevor M. Benson, David Furniss, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Bruce Napier, Mark Farries, Jon Ward, Peter M. Moselund, and Ole Bang, "Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm," Opt. Express 22, 19169-19182 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19169


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express20, 4887–4892 (2012). [CrossRef] [PubMed]
  2. C. A. Michaels, T. Masiello, and P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc.63, 538–543 (2009). [CrossRef] [PubMed]
  3. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt.51, 2794–2807 (2012). [CrossRef] [PubMed]
  4. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15, 865–871 (2007). [CrossRef] [PubMed]
  5. C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15, 422–434 (2009). [CrossRef]
  6. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett.34, 2015–2017 (2009). [CrossRef] [PubMed]
  7. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum - broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012). [CrossRef]
  8. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express21, 7851–7857 (2013). [CrossRef] [PubMed]
  9. J. Swiderski and M. Michalska, “Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers,” Opt. Laser Technol.52, 75–80 (2013). [CrossRef]
  10. P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9. [CrossRef]
  11. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2μm,” Opt. Express21, 24281–24287 (2013). [CrossRef] [PubMed]
  12. J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett.26, 150–153 (2014). [CrossRef]
  13. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE8898, 889808 (2013). [CrossRef]
  14. V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids377, 225–230 (2013). [CrossRef]
  15. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21, 1146–1155 (2004). [CrossRef]
  16. E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng.53, 071812 (2014). [CrossRef]
  17. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18, 6722–6739 (2010). [CrossRef] [PubMed]
  18. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18, 345–348 (2012). [CrossRef]
  19. W. Yuan, “2–10μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett.10, 095107 (2013). [CrossRef]
  20. C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express21, 29488–29504 (2013). [CrossRef]
  21. M. Bache, H. Guo, and B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express3, 1647–1657 (2013). [CrossRef]
  22. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express3, 1075–1086 (2013). [CrossRef]
  23. Y. Yu, X. Gai, D.-Y. C. P. Ma, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A stable broadband quasi continuum mid-infrared supercontinuum generated in chalcogenide glass waveguide,” Laser Photon. Rev., to be published (2014). [CrossRef]
  24. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express21, 29927–29937 (2013). [CrossRef]
  25. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express22, 3959–3967 (2014). [CrossRef] [PubMed]
  26. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29, 635–645 (2012). [CrossRef]
  27. I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550nm,” J. Opt. Soc. Am. B30, 2743–2757 (2013). [CrossRef]
  28. I. D. Aggarwal, L. E. Busse, L. B. Shaw, B. Cole, and J. S. Sanghera, Proceedings of the Diode Laser Technology Review, Albuquerque, NM (1998).
  29. J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999). [CrossRef]
  30. Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express2, 1632–1640 (2012). [CrossRef]
  31. Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater.36, 1076–1082 (2014). [CrossRef]
  32. H. G. Dantanarayana, N. M. Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express4, 1444–1455 (2014). [CrossRef]
  33. Amorphous Materials Inc., “Chalcogenide glasses,” available at http://www.amorphousmaterials.com/products/ (2013).
  34. A. Bornstein, N. Croitoru, and E. Marom, “Chalcogenide infrared As2−xSe3+x glass fibers,” J. Non-Cryst. Solids74, 57–65 (1985). [CrossRef]
  35. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45, 1439–1460 (2009). [CrossRef]
  36. M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun.15, 855–858 (1974). [CrossRef]
  37. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B25, 1645–1654 (2008). [CrossRef]
  38. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express21, 10764–10771 (2013). [CrossRef] [PubMed]
  39. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354, 3418–3427 (2008). [CrossRef]
  40. T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett.56, 203–205 (1990). [CrossRef]
  41. C. T. Hach, K. Cerqua-Richardson, J. R. Varner, and W. C. LaCourse, “Density and microhardness of As-Se glasses and glass fibers,” J. Non-Cryst. Solids209, 159–165 (1997). [CrossRef]
  42. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B27, 550–559 (2010). [CrossRef]
  43. U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order raman lines cross into anomalous dispersion regime,” Electron. Lett.49, 63–65 (2013). [CrossRef]
  44. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express18, 8647–8659 (2010). [CrossRef] [PubMed]
  45. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  46. R. T. White and T. M. Monro, “Cascaded raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett.36, 2351–2353 (2011). [CrossRef] [PubMed]
  47. J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. Loh, D. J. Richardson, and M. Ibsen, “1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol.29, 3461–3469 (2011). [CrossRef]
  48. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003). [CrossRef] [PubMed]
  49. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett.33, 621–623 (2008). [CrossRef] [PubMed]
  50. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009). [CrossRef] [PubMed]
  51. M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 32141–32150 (2010).
  52. I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express21, 32141–32150 (2013). [CrossRef]
  53. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B19, 753–764 (2002). [CrossRef]
  54. C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids17, 369–385 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited