OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19348–19356

Advanced hyperspectral video imaging system using Amici prism

Jiao Feng, Xiaojing Fang, Xun Cao, Chenguang Ma, Qionghai Dai, Hongbo Zhu, and Yongjin Wang  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19348-19356 (2014)
http://dx.doi.org/10.1364/OE.22.019348


View Full Text Article

Acrobat PDF (1362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose an advanced hyperspectral video imaging system (AHVIS), which consists of an objective lens, an occlusion mask, a relay lens, an Amici prism and two cameras. An RGB camera is used for spatial reading and a gray scale camera is used for measuring the scene with spectral information. The objective lens collects more light energy from the observed scene and images the scene on an occlusion mask, which subsamples the image of the observed scene. Then, the subsampled image is sent to the gray scale camera through the relay lens and the Amici prism. The Amici prism that is used to realize spectral dispersion along the optical path reduces optical distortions and offers direct view of the scene. The main advantages of the proposed system are improved light throughput and less optical distortion. Furthermore, the presented configuration is more compact, robust and practicable.

© 2014 Optical Society of America

OCIS Codes
(150.0155) Machine vision : Machine vision optics
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: June 4, 2014
Revised Manuscript: July 20, 2014
Manuscript Accepted: July 26, 2014
Published: August 4, 2014

Citation
Jiao Feng, Xiaojing Fang, Xun Cao, Chenguang Ma, Qionghai Dai, Hongbo Zhu, and Yongjin Wang, "Advanced hyperspectral video imaging system using Amici prism," Opt. Express 22, 19348-19356 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19348


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE4151, 94–102 (2001). [CrossRef]
  2. C. M. Stellman, F. M. Olchowski, and J. V. Michalowicz, “WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment),” Proc. SPIE4379, 339–346 (2001). [CrossRef]
  3. R. P. Lin, B. R. Dennis, and A. O. Benz, eds., The Reuven Ramaty High-Energy Solar Spectroscopic Imager(RHESSI)-Mission Description and Early Results (Springer, 2003).
  4. J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE7780, 77800B (2010). [CrossRef]
  5. Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face Recognition in Hyperspectral Images,” IEEE Trans. Pattern Anal. Mach. Intell.25(12), 1552–1560 (2003). [CrossRef]
  6. W. M. Porter and H. T. Enmark, “A system overview of the airborne visible/infrared imaging spectrometer(AVIRIS),” Proc. SPIE834, 22–31 (1987). [CrossRef]
  7. R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE2480, 258–267 (1995). [CrossRef]
  8. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE4056, 50–64 (2000). [CrossRef]
  9. M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE6062, 60620G (2006). [CrossRef]
  10. M. R. Descour and E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt.34(22), 4817–4826 (1995). [CrossRef] [PubMed]
  11. W. R. Johnson, D. W. Wilson, and G. Bearman, “Spatial-spectral modulating snapshot hyperspectral imager,” Appl. Opt.45(9), 1898–1908 (2006). [CrossRef] [PubMed]
  12. N. A. Hagen, E. L. Dereniak, and D. T. Sass, “Maximizing the resolution of a CTIS instrument,” Proc. SPIE6302, 63020L (2006). [CrossRef]
  13. N. A. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt.47(28), F85–F95 (2008). [CrossRef] [PubMed]
  14. W. R. Johnson, D. W. Wilson, and G. Bearman, “All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications,” Opt. Lett.30(12), 1464–1466 (2005). [CrossRef] [PubMed]
  15. D. J. Brady and M. E. Gehm, “Compressive imaging spectrometers using coded apertures,” Proc. SPIE6246, 105–115 (2006). [CrossRef]
  16. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express15(21), 14013–14027 (2007). [CrossRef] [PubMed]
  17. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt.47(10), B44–B51 (2008). [CrossRef] [PubMed]
  18. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express17(8), 6368–6388 (2009). [CrossRef] [PubMed]
  19. H. H. Barrett, “Editorial: limited-angle tomography for the nineties,” J. Nucl.31, 1688–1692 (1990).
  20. A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE7334, 73340H (2009). [CrossRef]
  21. X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell.33(12), 2423–2435 (2011). [CrossRef] [PubMed]
  22. X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2011), pp. 297–304.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited