OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19707–19725

Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems

Anvar S. Baimuratov, Ivan D. Rukhlenko, Mikhail Yu. Leonov, Alexey G. Shalkovskiy, Alexander V. Baranov, and Anatoly V. Fedorov  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19707-19725 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theory of phonon-assisted photoluminescence from a semiconductor quantum dot (QD) whose electron and phonon subsystems are resonantly coupled via the polar electron–phonon interaction. We show that the resonance-induced renormalization of the QD energy spectrum, leading to the formation of the polaron-like states, can be performed exactly in terms of the arbitrarily degenerate states of electron–hole pairs and the phonon modes of equal energies. Using the model of QDs with finite potential barriers for electron and holes leads to new selection rules of interband optical transitions and the three-particle interaction describing simultaneous absorption and/or emission of a photon and a phonon. We also derive a simple expression for the differential cross section of the stationary, low-temperature photoluminescence, which allows the fundamental parameters of the polaron-like excitations to be readily extracted from the frequency-resolved experimental spectra. In particular, the energies of the excitations and the coherence relaxation rates of the optical transitions resulting in their generation and recombination are shown to be directly given by the positions and widths of the photoluminescence peaks. The developed theory complements the existing experimental techniques of studying the phonon-assisted photoluminescence from individual nanocrystals.

© 2014 Optical Society of America

OCIS Codes
(300.3700) Spectroscopy : Linewidth
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(160.4236) Materials : Nanomaterials
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: June 30, 2014
Revised Manuscript: July 24, 2014
Manuscript Accepted: July 24, 2014
Published: August 8, 2014

Anvar S. Baimuratov, Ivan D. Rukhlenko, Mikhail Yu. Leonov, Alexey G. Shalkovskiy, Alexander V. Baranov, and Anatoly V. Fedorov, "Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems," Opt. Express 22, 19707-19725 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Yu, Q. Liang, Y. Jia, and J. Dong, “Phonon sidebands of photoluminescence in single wall carbon nanotubes,” J. Appl. Phys. 107, 024314 (2010). [CrossRef]
  2. S. Sohal, Y. Alivov, Z. Fan, and M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys. 108, 053507 (2010). [CrossRef]
  3. S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010). [CrossRef]
  4. C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton–phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 261904 (2009). [CrossRef]
  5. S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008). [CrossRef]
  6. T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006). [CrossRef]
  7. I. D. Rukhlenko and A. V. Fedorov, “Resonant photoluminescence of quantum dots: Dynamics of electronic subsystem,” Bull. Russ. Acad. Sci. 70, 126 (2006).
  8. V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004). [CrossRef]
  9. T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012). [CrossRef]
  10. E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011). [CrossRef]
  11. K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011). [CrossRef]
  12. S. Dhara, A. K. Arora, S. Bera, and J. Ghatak, “Multiphonon probe in ZnS quantum dots,” J. Raman Spectrosc. 41, 1102–1105 (2010). [CrossRef]
  13. S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).
  14. A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004). [CrossRef]
  15. K. Rezgui, S. Aloulou, J. Rihani, and M. Oueslati, “Competition between strain and confinement effects on the crystalline quality of InAs/GaAs (001) quantum dots probed by Raman spectroscopy,” J. Raman Spectrosc. 43, 1964–1968 (2012). [CrossRef]
  16. A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007). [CrossRef]
  17. A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006). [CrossRef]
  18. A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006). [CrossRef]
  19. R. W. Meulenberg, T. Jennings, and G. F. Strouse, “Compressive and tensile stress in colloidal CdSe semiconductor quantum dots,” Phys. Rev. B 70, 235311 (2004). [CrossRef]
  20. S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud, “Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix,” J. Alloys Comp. 555, 161–168 (2013). [CrossRef]
  21. G. H. Shih, C. G. Allen, and B. G. Potter, “Interfacial effects on the optical behavior of Ge:ITO and Ge:NO nanocomposite films,” Nanotechnol. 23, 075203 (2012). [CrossRef]
  22. N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012). [CrossRef]
  23. A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003). [CrossRef]
  24. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, Saint Petersburg, 2011).
  25. A. Rogach, ed., Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications (Springer, New York, 2008). [CrossRef]
  26. Y. Masumoto and T. Takagahara, eds., Semiconductor Quantum Dots: Physics, Spectroscopy and Applications (Springer, New York, 2002). [CrossRef]
  27. M. V. Mukhina, V. G. Maslov, A. V. Baranov, M. V. Artemyev, A. O. Orlova, and A. V. Fedorov, “Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods,” Opt. Lett. 38, 3426–3428 (2013). [CrossRef] [PubMed]
  28. A. S. Baimuratov, V. K. Turkov, I. D. Rukhlenko, and A. V. Fedorov, “Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal,” Opt. Lett. 37, 4645–4647 (2012). [CrossRef] [PubMed]
  29. A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013). [CrossRef] [PubMed]
  30. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013). [CrossRef]
  31. V. Cesari, W. Langbein, and P. Borri, “Dephasing of excitons and multiexcitons in undoped and p-doped InAs/GaAs quantum dots-in-a-well,” Phys. Rev. B 82, 195314 (2010). [CrossRef]
  32. E. A. Muljarov and R. Zimmermann, “Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model,” Phys. Rev. Lett. 98, 187401 (2007). [CrossRef] [PubMed]
  33. K. Kojima and A. Tomita, “Influence of pure dephasing by phonons on exciton–photon interfaces: Quantum microscopic theory,” Phys. Rev. B 73, 195312 (2006). [CrossRef]
  34. A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004). [CrossRef]
  35. R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007). [CrossRef]
  36. B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006). [CrossRef]
  37. M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006). [CrossRef]
  38. S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006). [CrossRef]
  39. D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005). [CrossRef]
  40. I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15461–15482 (2011). [CrossRef]
  41. A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton–phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56, 7491 (1997). [CrossRef]
  42. A. V. Fedorov and A. V. Baranov, “Exciton–vibrational interaction of the frohlich type in quasi-zero-size systems,” J. Exp. Theor. Phys. 83, 610–618 (1996).
  43. T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995). [CrossRef] [PubMed]
  44. I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006). [CrossRef]
  45. I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006). [CrossRef]
  46. B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006). [CrossRef]
  47. V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005). [CrossRef]
  48. J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, “Longitudinal optical phonons in the excited state of CuBr quantum dots,” Phys. Rev. B 68, 113305 (2003). [CrossRef]
  49. S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002). [CrossRef]
  50. A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390–1397 (2001). [CrossRef]
  51. S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999). [CrossRef]
  52. S. Y. Kruchinin and A. V. Fedorov, “Renormalization of the energy spectrum of quantum dots under vibrational resonance conditions: Persistent hole burning spectroscopy,” Opt. Spectrosc. 100, 41–48 (2006). [CrossRef]
  53. R. P. Miranda, M. I. Vasilevskiy, and C. Trallero-Giner, “Nonperturbative approach to the calculation of multi-phonon Raman scattering in semiconductor quantum dots: Polaron effect,” Phys. Rev. B 74, 115317 (2006). [CrossRef]
  54. E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002). [CrossRef]
  55. O. Verzelen, R. Ferreira, and G. Bastard, “Excitonic polarons in semiconductor quantum dots,” Phys. Rev. Lett. 88, 146803 (2002). [CrossRef] [PubMed]
  56. T. Stauber, R. Zimmermann, and H. Castella, “Electron–phonon interaction in quantum dots: A solvable model,” Phys. Rev. B 62, 7336 (2000). [CrossRef]
  57. V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998). [CrossRef]
  58. T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355 (1997). [CrossRef]
  59. I. B. Levinson and E. I. Rashba, “Threshold phenomena and bound states in the polaron problem,” Physics-Uspekhi 16, 892–912 (1974). [CrossRef]
  60. M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, “Theory of one-phonon Raman scattering in semiconductor microcrystallites,” Phys. Rev. B 51, 1680–1693 (1995). [CrossRef]
  61. E. Evans and D. L. Mills, “Theory of inelastic scattering of slow electrons by long-wavelength surface optical phonons,” Phys. Rev. B 8, 4126–4139 (1973).
  62. N. Mori and T. Ando, “Electron–optical-phonon interaction in single and double heterostructures,” Phys. Rev. B 40, 6175–6188 (1989). [CrossRef]
  63. A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon–phonon modes,” Semiconductors 38, 1101–1109 (2004). [CrossRef]
  64. O. Madelung, M. Schultz, and H. Weiss, eds., “Semiconductors. Physics of Group IV Elements and III–V Compounds,” Landolt-Börnstein, New Series, Group III, vol. 17, Pt. a (Springer-Verlag, Berlin, 1982).
  65. K. Blum, Density Matrix Theory and Applications (Springer, Berlin, 2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited