OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20432–20445

Controlling near-field polarization distribution of a plasmonic prolate nanospheroid by its aspect ratio and polarization of the incident electromagnetic field

Evgene D. Chubchev, Yulia V. Vladimirova, and Victor N. Zadkov  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 20432-20445 (2014)
http://dx.doi.org/10.1364/OE.22.020432


View Full Text Article

Enhanced HTML    Acrobat PDF (29037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-field polarization distribution of a plasmonic prolate nanospheroid in an incident electromagnetic field versus its polarization and the spheroid’s aspect ratio is studied in detail. Polarization of the near-field is described with the help of the 3D generalized Stokes parameters, allowing simple visualization. It is shown that this distribution has a complex structure, which drastically depends on the incident field polarization and parameters of the plasmon resonance of the nanoparticle. Received analytical solutions cover the whole set of particles with shape varying from spherical to the nanoneedles and nanorods by changing the aspect ratio of the spheroid. An experiment for visualization of the vectorial near-field around a plasmonic nanoparticle is proposed.

© 2014 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(160.4236) Materials : Nanomaterials
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Physical Optics

History
Original Manuscript: June 18, 2014
Revised Manuscript: July 29, 2014
Manuscript Accepted: August 1, 2014
Published: August 15, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Evgene D. Chubchev, Yulia V. Vladimirova, and Victor N. Zadkov, "Controlling near-field polarization distribution of a plasmonic prolate nanospheroid by its aspect ratio and polarization of the incident electromagnetic field," Opt. Express 22, 20432-20445 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-20432


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Hecht and L. Novotny, Principles of Nano-Optics (Cambridge University, 2006).
  2. Alternatively, one can study the dependence of the vectorial near-field of the prolate nanospheroid at fixed value of its aspect ratio versus the polarization and frequency of the incident field.
  3. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011). [CrossRef]
  4. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovskii, and Yu. S. Kivshar, “Optical nanoantennas,” Phys. Usp.56, 539–564 (2013). [CrossRef]
  5. V. Klimov, Nanoplasmonics (Pan Stanford, 2014).
  6. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007). [CrossRef] [PubMed]
  7. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005). [CrossRef] [PubMed]
  8. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94, 017402 (2005). [CrossRef] [PubMed]
  9. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007). [CrossRef] [PubMed]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275, 1102–1106 (1977). [CrossRef]
  11. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications (Springer-Verlag, 2006). [CrossRef]
  12. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of spaser-based nanolaser,” Nature (London)460, 1110–1112 (2009). [CrossRef]
  13. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442 (2008). [CrossRef] [PubMed]
  14. S. Kühn, U. Hàkanson, L. Rogobeand, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006). [CrossRef] [PubMed]
  15. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004). [CrossRef] [PubMed]
  16. Yu. V. Vladimirova, V. V. Klimov, V. M. Pastukhov, and V. N. Zadkov, “Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure,” Phys. Rev. A85, 053408 (2012). [CrossRef]
  17. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light–Atom Interactions (Oxford University, 2010).
  18. P. Balcou and L. Durtriaux, “Dual optical tunneling times in frustrated total internal reflection,” Phys. Rev. Lett.78, 851 (1997). [CrossRef]
  19. Near-Field Optics (NATO Advanced Study Institute, Series E: Applied Sciences, vol 242) D. Pohl and D. Courjon, eds. (Kluwer, 1993).
  20. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Ligh (Elsevier, 1999).
  21. Z. Q. Qui and S. D. Bader, “Surface magneto-optic Kerr effect (SMOKE),” J. Magn. Magn. Mater.200, 664–678 (1999). [CrossRef]
  22. A. Landragin, J. Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, “Measurement of the van der Waals Force in an Atomic Mirror,” Phys. Rev. Lett.77, 1464–1467 (1996). [CrossRef] [PubMed]
  23. T. Esslinger, M. Weidemüller, A. Hemmerich, and T. W. Hänsch, “Surface-plasmon mirror for atoms,” Opt. Lett.18, 450–452 (1993). [CrossRef] [PubMed]
  24. I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Near-field electromagnetic trapping through curl-spin forces,” Phys. Rev. A87, 063807 (2013). [CrossRef]
  25. B. S. Luk’yanchuk, A. E. Miroshnichenko, and Yu. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt.15, 073001 (2013). [CrossRef]
  26. M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B76, 125414 (2007). [CrossRef]
  27. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009). [CrossRef] [PubMed]
  28. P. Biagioni, M. Savoini, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80, 153409 (2009). [CrossRef]
  29. D. S. Kim and Z. H. Kim, “Role of in-plane polarizability of the tip in scattering near-field microscopy of a plasmonic nanoparticle,” Opt. Express8, 8689–8699 (2012). [CrossRef]
  30. M. Rahmani, E. Yoxall, B. Hopkins, Y. Sonnefraud, Y. Kivshar, M. Hong, Ch. Phillips, S. Maier, and A. E. Miroshnichenko, “Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution,” ACS Nano7, 11138–11146 (2013). [CrossRef] [PubMed]
  31. V. Mizeikis, E. Kowalska, B. Ohtani, and S. Juodkazis, “Frequency- and polarization-dependent optical response of asymmetric spheroidal silver nanoparticles on dielectric substrate,” Phys. Status Solidi RRL4, 268–270 (2010). [CrossRef]
  32. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B101, 6661–6664 (1997). [CrossRef]
  33. J. Perez-Juste, L. M. Liz-Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth for gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater.14, 571–579 (2004). [CrossRef]
  34. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E66, 016615 (2002). [CrossRef]
  35. G. Hass and L. Hadley, Optical Properties of Metals (American Institute of Physics Handbook) ed. by D. E. Gray, ed. (McGraw-Hill, 1963).
  36. M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, and N. N. Voitovich, Generalized Method of Eigenoscillation in Diffraction Theory (Wiley, 1999).
  37. V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Spontaneous emission of an atom placed near a prolate nanospheroid,” Eur. Phys. J. D20, 133–148 (2002). [CrossRef]
  38. A. F. Stevenson, “Electromagnetic scattering by an ellipsoid in the third approximation,” Appl. Phys.24, 1143–1151 (1953). [CrossRef]
  39. It is worth to note here that the degree of polarization we introduced in the paper does not reflect the fluctuations of the incident field vector. In order to take these fluctuations into account one has to use different definition of the degree of polarization via the Stokes parameters, which for the plane wave has the form: P*=(S12+S22+S32)0.5/S0. Without fluctuations, this polarization degree is always equal to 1.
  40. P. J. S. Smith, I. Davis, C. G. Galbraith, and A. Stemmer, “Special issue on high-resolution optical imaging,” J. Opt.15(9), 090201 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited